No. ADB/AULIP/MEETING MINUTES/15/2012/297

Addendum No. 02
Name of work: - Design, Build and Operate (DBO) contract for Water Supply in South East Guwahati
Package number: - AUIIP/PR-2/GUW/WS/03

Sr. No.	Section	Reference	Description in Bid Document	Clause Replaced / Amended/ Added as Below
1	Technical Proposal Data Sheet	$\begin{aligned} & \text { Vol-1, Section } 4 \\ & \text { Pg-49 } \end{aligned}$	To be provided to each design personnel named in Schedule No. 4 [Design Personnel]	To be provided to each Operation personnel named in Schedule No. 5 [Operation Personnel].
2	Employers Technical Requirement	Clause 1447; Pg295Section 6 Vol-2 Desilting Pumps of Intake Well	Pumps shall be suitable...2hours continuous operation. 2 Working + 1 Standby number of pumps shall be provided for operation In each well.	Pumps shall be suitable....2hours continuous operation. 1 Working + 1 Standby number of pumps shall be provided for operation In each well.
3	Employers Technical Requirement	Clause 255; Pg-59; Section 6 Vol-2 xviii. Raw Water Pumps	One working and one standby in each well for Phase I. Discharge of each pump (Phase 1: 628 lps . and Head 21 m.)	One working and one standby in each well for Phase I. Discharge of each pump (Phase I: 628 lps . and Head 28 m .)
4	Social Due Diligence Report (Distribution network)	Pg-7,Table4 AppendixII Part B; Vol-5	Proposed Pumps (Column): 10kw (3+1), $18 \mathrm{kw}(3+1), 7.5 \mathrm{kw}(3+1), 10 \mathrm{kw}(3+1), 75 \mathrm{kw}$ (3+1)	$\begin{aligned} & \text { Proposed Pumps (Column): } 10 \mathrm{kw}(2+1), 18 \mathrm{kw}(2+1) \text {, } \\ & 7.5 \mathrm{kw}(2+1), 10 \mathrm{kw}(2+1), 75 \mathrm{kw}(2+1) \end{aligned}$
5	Employers Technical Requirement	Clause 1379; Item No. 1 Table 89; Pump duty condition and Operating Range. Pg-283; Section 6 Vol2	Discharge 2271 Cum per hour	Discharge 2261 Cum per hour
6	Drawings \& Reports	Vol-4, Drawing List	(Two Additional Drawings)	A) INTAKE 12. Contour Map of Intake \& WTP: AUIIP/GUWNWS/03/20 (Drawing No.) C) Distribution Network Drawings 9. Contour Map of SE Guwahati: AUIIP/GWSP/S_E Guwahati/Contour (Drawing No.)
7	Drawings \& Reports	Vol-4, B. Reports	(Two Additional Reports)	1. Soil Investigation Report of Intake 2. Soil Investigation Report of WTP

No. ADB/AUIIP/MEETING MINUTES/15/2012/296

Addendum No. 03

Name of work: - Design, Build and Operate (DBO) contract for Water Supply in South East Guwahati
Package number: - AUIIP/PR-2/GUW/WS/03

Sr. No.	Section	Reference	Description of clause in Bid Document	Clause Replaced/ Amended/ Added as Below
1.	Section 4	Form No. 6 Financial Situation	a) Audited financial statements for the last three years (for the Bidder or each partner of JVCA Bidder). Firms owned by individuals, and partnerships, may submit their financial statements certified by an accountant, and supported by copies of tax returns, if audits are not required by the laws of their countries of origin. A summary of assets and liabilities in USD equivalent (at the rates of exchange current at the end of each year) for the previous three years;	a) Audited financial statements for the last three years, i.e. FY 2013-14, 2012-13 and 2011-12 (for the Bidder or each partner of JVCA Bidder). Firms owned by individuals, and partnerships, may submit their financial statements certified by an accountant, and supported by copies of tax returns, if audits are not required by the laws of their countries of origin. A summary of assets and liabilities in USD equivalent (at the rates of exchange current at the end of each year) for the previous three years;
2.	Section 4 4.3.1.	Particular Design Experience	The Bidder shall demonstrate successful experience as a prime contractor or lead partner of a JVCA contractor in the design of at least [2] project(s) with a design fee of USD 0.50 million involving contractor's single point responsibility for the design of works of a nature and complexity comparable to the proposed Works within the last [5] years.	The Bidder shall demonstrate successful experience as a prime contractor or lead partner of a JVCA contractor in the design of at least [1] projectwith a design fee of USD 0.50 million involving contractor's single point responsibility for the design of works of a nature and complexity comparable to the proposed Works within the last [5] years.
3.	Section 4 4.3.2.	Particular Construction Experience	Note: The final contract price of completed works will be multiplied by the following Conversion factors to arrive at the contract price equivalent to 2013 contract price (CP). Works completed in the year 2013 CPX1.00 Works completed in the year 2012 CPX1. 10 Works completed in the year 2011 CPX1. 20 Works completed in the year 2010 CPX1.30 Works completed in the year 2009 CPX1.40 Works completed in the year 2008 CPX1.50 Works completed in the year 2007 CPX1.60 Works completed in the year 2006 CPX1.70 Works completed in the year 2005 CPX1.80	Note: The final contract price of completed works will be multiplied by the following Conversion factors to arrive at the contract price equivalent to 2013 contract price (CP). Works completed in the year 2014CPX1.00 Works completed in the year 2013CPX1.10 Works completed in the year 2012CPX1.20 Works completed in the year 2011CPX1.30 Works completed in the year 2010CPX1.40 Works completed in the year 2009CPX1.50 Works completed in the year 2008CPX1.60 Works completed in the year 2007CPX1.70 Works completed in the year 2006CPX1.80

			Works completed in the year 2004 CPX1.90	Works completed in the year 2005CPX1.90
4.	Section 4 4.3 .3.	Particular Operation Experience	The Bidder shall demonstrate that it has successful experience as a prime contractor, partner of a JVCA contractor or a subcontractor in the substantial completion of at least 2projects of USD 0.5 million/annum as operation fee (but excluding the cost of power) involving the operation of works of equal or higher complexity as the Works detailed by the Bidder in its Contractor's Proposal during the past [5] years.	The Bidder shall demonstrate that it has successful experience as a prime contractor, partner of a JVCA contractor or a subcontractor in the substantial completion of at least 1 project of USD 0.5 million/annum as operation fee (but excluding the cost of power) involving the operation of works of equal or higher complexity as the Works detailed by the Bidder in its Contractor's Proposal during the past [5] years.
5.	Section 6 Table 17 2.4.1 General Production experience. Supply of Ductile Iron Pipes Documentation Required Form EXP-1	EXP-1 andMOU with Manufacturer meeting the experience criteria as on publication of the IFTP i:e. 29 June 2015.		

Addl. Project Director Programme
Assam Urban Infrastructure lives anahati-5

GEOTECHNICAL INVESTIGATION WORKS FOR
 SOUTH EAST GUWAHATI WATER SUPPLY PROJECT (AT IOCL GATE-1 NEW INTAKE WELL)

CLIENT
SHAH TECHNICAL CONSULTANTS PRIVATE LIMITED
IN ASSOCIATION WITH SMEC (INDIA) PVT.LTD.

Geo-Technical Consultant
ESS FOUNDATION PVT.LTD.
96,BARTHAKUR MILL ROAD,ULUBARI
GUWAHATI- 781007
PHONE-0361-2525404,e-mail:ess.engineers@rediffmail.com

GEOTECHNICAL INVESTIGATION WORKS FOR SOUTH EAST GUWAHATI WATER SUPPLY PROJECT (AT IOCL GATE-1 NEW INTAKE WELL)

CLIENT
SHAH TECHNICAL CONSULTANTS PRIVATE LIMITED IN ASSOCIATION WITH SMEC (INDIA) PVT.LTD.

Geo-Technical Consultant ESS FOUNDATION PVT.LTD. 96,BARTHAKUR MILL ROAD,ULUBARI
GUWAHATI- 781007

PHONE-0361-2525404,e-mail:ess.engineers@rediffmail.com

TABLE OF CONTENT

CHAPTER - 01
INTRODUCTION
Page No. 1

CHAPTER -02
SITE
Page No. 1

CHAPTER -03
FIELD INVESTIGATION
Page No. 4

CHAPTER -04
LABORATORY TESTING
Page No. 5

CHAPTER - 05
DISCUSSION \& RECOMMENDATION
Page No. 6

ANNEXURES

\qquad A

1.0 INTRODUCTION:

Soil investigation report for proposed Water Treatment Plant for SOUTH GUWAHATI EAST WATER SUPPLY SYSTEM was entrusted to ESS FOUNDATION PVT.LTD.,96,Barthakur Mill Road,Ulubari,Guwahati-781007.The scope of the soil investigation work consist of conducting soil investigation at New Intake Works Location upto a maximum depth of 26.10 m .Borings were included collection of core samples of rock. The formation of soil/rock layer is shown in bore hole log for various layers present at their respective depths along with their thickness.During sinking of bore holes rock cores were to be collected for laboratory tests. The core samples were be subjected to tests to obtain different properties.

2.0 LOCATION OF SITE

The intake point is inside the river on the south bank of River Brahmaputra.The site is approachable from the road abbuting Gauhati Refinary,Guwahati. The site is at present occupied by Govt. of Assam.The nearest railway station is at Guwahati approximately 12 kilometers to the SE direction. The nearest airport Lokpriya Gopinath International Airportis located approximately 45 km to the west

GEOLOGY OF THE AREA

Geologically, the area falls in the lower part of the Dalling and Darjeeling series of Archean group of rocks of Sikkim and Nepal. The Daling series is a schistose group of rocks consisting flakes of mica with abundant mafic minerals. In majority of the area shows that the Phyllites carry porphyroblasts of chloride and Biotite with Quartz and Feldspar in number of places. Quartzite as quartz - veins in the Granite - gneiss has also been identified.

SCENARIO OF SEISMIC HAZARD IN ASSAM

INTRODUCTION:

Geomorphologically, NE India is located in an earthquake prone zone (zone V) of the Indian subcontinent. In this region earthquake comes with landsliding flood and along series of smaller magnitude earthquakes. Here earthquakes of upto MM intensity IX can be expected. According to a hazard map by the Global Seismic Hazard Assessment Programme, the state can expect to have a peak gravitational acceleration (PGA) of 0.24 g to 0.48 g . The region where the highest PGA can be expected is along the state's border with Meghalaya, the site of the Great Indian earthquake of 1897.the area falls in zone-v

EARTHQUAKE HISTORY

Much of Assam lies in the Bramaputra River Valley, except for a few southern districts. The northern and eastern parts of this valley are bounded by the Himalayan Frontal Thrust (HFF). In the eastern parts along with the HFF, there is the arc of the Lohit and Naga thrusts. Among the large earthquakes, in this region were the events in 1897 and 1950. The 1897 earthquake is well known for the dramatic accounts of violent upthrow during the shock.

SIGNIFICANT EARTHQUAKES IN ASSAM

Both instrumented and non-instrumented events may be listed below. Reported magnitudes are listed for instrumented events while the maximum observed intensities are listed for non-instrumented shocks. Some of the latter might also have magnitudes assigned to them by various authors, in which case the reference is stated.

EARTHQUAKES DURING NON-INSTRUMENTAL PERIOD IN
ASSAM 1548, 1596,1601, 1642, 1663, 1696, 1756, 1772, 1838, \& 1841.
EARTHQUAKE DURING INSTRUMENTAL PERIOD IN ASSAM 1869, 1897, 1923, 1930,1943, 1947, 1950, 1985, 1984 \& 1988.

Reported magnitudes for instrumented events are given below

SI.NO	Date	Magnitude	Epicentre
1	10 th January 1869	7.5	9.4 Kms North of Kumbhir (Assam)
2	12 June 1897	8.7	14 Kms ESE of Sangsik (Meghalaya)
3	9th september 1923	7.1	South Meghalaya
4	2nd July 1930	7.1	3.9 kms NNW of Dabigiri (Meghalaya)
5	21 st January 1941	6.5	Near Tezpur,Assam
6	23 rd October 1943	7.2	13.6 kms E of Hojai (Assam)
7	29th July 1947	7.7	Arunachal Pradesh
8	15th August 1950	8.7	20.7 kms NW of Tajobam,Arunachal Pradesh
9	21st March 1954	7.7	Manipur Burma border
10	1st July 1957	7.0	Indo Burma border
11	31st December 1984	6.0	SSE of Silchar
12	6th August 1988	7.3	Indo Burma border

The 1897 earthquake is the 2nd largest earthquake in the recorded history.The earthquake originated on a south-southwest dipping fault,named the oldham fault,bounding the NorthWestern section of the Shillong Plateau.During the event,the total slip on this fault,amounted to 16 m . which is among the greatest for any known earthquake.The towns of Dhubri,Goalpara,Guwahati and kuch Bihar in Assam and West Bengal was heavily damaged.At Guwahati is located in an earthquake prone zone(zone v as per IS:1893-2002),the earth subsided along the Brahmaputra and several sand vents were formed.The Brahmaputra is also reported to have risen by several mtrs. and even reversed its flow during the shock. The earthquake 15th August 1950 was the 6th largest earthquake of the recorded history.
Though it hit in a mountainous region along India's international border with China, 1500 people were killed and the drainage of the region was greatly affected. The resultant floods were the cause of most of the fatalities aftermath of this earthquake. The initial shock was followed by thousands of aftershocks, some of which were big earthquakes enough to be reckoned. It had a magnitude of 8.7 and struck a relatively sparsely populated region along the Indo-China border. This earthquake is often referred to as the "Assam Earthqake of 1950".It was also felt throughout Bangladesh, Bhutan and Myanmar. Damage occurred in the entire region as far as Kolkata. It was felt across a wide area of the subcontinent, over an area totalling 4.5 million square miles.

3.0 FIELD INVESTIGATION

The details of field work,location, bore hole no. RL,water level and the dates of commencement and completion are tabulated below:

Location	B.H No.	Depth (m)	RL (m)	RL of Water level (m)	Date	
				starting	Completion	
South East Guwahati water supply	1	12.60	28.686	40.686	$3 / 2 / 2015$	$7 / 2 / 2015$
System (New						
Intake well location)	2	26.10	28.686	40.686	$18 / 01 / 2015$	$30 / 01 / 2015$

A) Methodology:

i) Boring operation :

The 150 mm dia bore holes were extended to the termination depth by rotary core drilling technique using diamond bits.Drilling was done with standard L\&T rotary drilling machine mounted over $6 \mathrm{~m} \times 6 \mathrm{~m}$ burge floating over the river Brahmaputra and properly anchoring at the bed level of the river as per IS:6926-1973.In this method the hole is advanced by rotating a system consisting of a series of hollow drill rods to the bottom of which is attached a double tube core barrel with diamond coring bit by means of a diesel operated engine. When the rod with the coring bit is rotated downward pressure is applied to the system for penetration in the rocky strata and water under pressure is introduced into the bottom of the hole through the hollow drill rods.Water served the dual function of cooling the bit as it enters the hole and carrying the cuttings from the bottom of the hole on its return journey to the surface. Seamless flush jointed steel casing of NX sizes were used to prevent any caving and water loss from holes and they were inserted simultaneously with the advancement of drilling operation.Rock core samples were collected in standard NX size barrel and stored as per IS:4464-1967 and IS:4078-1967.

iii) Standard Penetration Test

Standard Penetration test is performed in the boreholes at intervals 1.50 m or change of strata. The standard split spoon sampler, attached to a string of drill rods was lowered to the bottom of the hole and allowed to rest under self weight. The drill rods were connected to driving assembly which consisted of a hoisting equipments, a drive weight (Hammer) of 63.5 Kg , and a guide to ensure a 75 cm free fall of hammer on an anvil. The number of hammer blows that were required to penetrate the sampler through three runs of 150 mm each were recorded. Initial driving of 150 mm was disregarded and the number of blows required to drive the sampler through the remaining 300 mm is called BLOW COUNT or PENETRATION NUMBER,N. At the end of the test, the sampler was withdrawn and the soil extracted for subsequent testing in the laboratory. If the penetration was less than 30 cm for 100 blows, it is considered as refusal and the actual penetration was recorded.All the bore holes are sunk with winch.However,rising of hammer SPT is done manually.Hence there will not be any inertial loss and the efficiency of hammer blows should be considered as 100%.

iv) Sub soil water level

The sub soil water level is noted when sruct in.There is termed as observed water level.Static water level is noted after 24 hours of removal of casing and shown in the profile.

4.0 LABORATORY TESTING

The following laboratory tests were carried out to ascertain the properties of the sub-soil.
i) Water Absorption Test
ii) Porosity of rock
iii) Density of Rock
iv) Uniaxial compression of Rock

5.0 DISCUSSION AND RECOMMENDATION :

i) The sub soil formation in this are has been investigated by sinking two bore holes explored upto a maximum depth of 12.60 m below the existing ground level.location of the bore holes are shown in the site plane provided in annexure-A.The bore hole logs,graphical representation of field ' N ' values with depth,tabulated laboratory test results,graphs are provided in Annexure-A.
ii) Bor Hole location- BH-01 :

From field and laboratory investigations it is found that the geological formation consists of three layers, the details of each layers are labulated below.

Layer No.	Layer Description	Thickness of layer (m)
1	Silty sand	1.70
2	Sand stone	1.50
3	Granite	9.40

iii) Bor Hole location - BH-02 :

From field and laboratory investigations it is found that the geological formation consists of two layers, the details of each layers are labulated below.

Layer No.	Layer Description	Thickness of layer (m)
1	Silty sand	1.20
2	Granite	24.90

RECOMMENDED BEARING CAPACITY :

ANNEXURE - A

CHEMICAL ANALYSIS OF SUB-SOIL WATER:

Bh No-1

SI.No.	Parameters	Results	Limitations
1	P^{H} Value	6.8	6.5 to 8
2	Chlorides (as CI)	74	0 to 250
3	Sulphate (as SO4)	69	0 to 200

Bh No-2

SI.No.	Parameters	Results	Limitations
1	P^{H} Value	6.75	6.5 to 8
2	Chlorides (as CI)	83	0 to 250
3	Sulphate (as SO4)	68	0 to 200

The above results show that the strata is quite safe for Concrete \mathcal{E} Reinforcement for the site.

RESULTS OF LABORATORY TEST ON ROCK SAMPLES

BORE HOLE NO.	$\begin{aligned} & \dot{0} \\ & \underset{y y y}{4} \\ & \frac{2}{c} \\ & \vdots \end{aligned}$				$\begin{aligned} & \underline{3} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \underset{Z}{n} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	忽	$\begin{aligned} & \text { a } \\ & \sum_{0} \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$	$\frac{\underset{\sim}{\sim}}{\frac{N}{n}}$
1	1	1.70	Core	Sand Stone	White	0.30\%	1.03	2.58	217.72	-
	2	3.20	Core	Granite	White	0.18 \%	0.95	2.63	622.10	-
	3	4.70	Core	Granite	White	0.20 \%	0.94	2.62	635.14	-
	4	6.90	Core	Granite	White	0.17 \%	0.98	2.63	684.30	-
	5	9.30	Core	Granite	White	0.19 \%	1.01	2.63	658.23	-
	6	11.10	Core	Granite	White	0.18\%	0.96	2.62	675.19	-

RESULTS OF LABORATORY TEST ON ROCK SAMPLES

BORE HOLE NO.	$\begin{aligned} & 0 \\ & \sum \\ & i=1 \\ & \sum_{n}^{2} \\ & \infty \end{aligned}$			$\begin{aligned} & \text { z } \\ & 0 \\ & \sum_{n}^{4} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 亿 } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \lambda \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	䔍		$\frac{\underset{\sim}{x}}{\substack{n}}$
2	1	4.20	Core	Granite	White	0.19\%	1.20	2.59	715.50	-
	2	7.30	Core	Granite	White	0.21\%	1.01	2.61	720.45	-
	3	11.60	Core	Granite	White	0.20\%	0.96	2.63	755.45	-
	4	14.00	Core	Granite	White	0.24\%	0.98	2.61	765.85	-
	5	16.90	Core	Granite	White	0.18\%	0.95	2.63	725.63	-
	6	19.00	Core	Granite	White	0.21\%	0.99	2.62	780.44	-
	7	21.90	Core	Granite	White	0.17\%	0.98	2.63	775.25	-
	8	24.20	Core	Granite	White	0.18\%	0.97	2.62	784.15	-

WATER PERCOLATION / PACKER TEST REPORT

BORE HOLENO.	DATE	TEST No.	PRESSURE IN $\mathrm{Kg} / \mathrm{cm}^{2}$	READING IN LTR.		total WATER LOSS (ltr.)	dURATION (Minutes)	WATER SWIVEL HEAD (m)	$\begin{array}{\|c} \text { DIA. OF } \\ \text { BORE HOLE } \\ (\mathrm{mm}) \end{array}$	TESTSECTION (m)
				FROM	то					
1			1	345.00	345.20	0.20	5.00			
			2	346.00	346.40	0.40	5.00			
	5/2/2015	1	3	348.00	348.50	0.50	5.00	19.40	75.31	3.10
			4	350.00	350.80	0.80	5.00			
			5	352.00	353.10	1.10	5.00			
			1	360.00	360.30	0.30	5.00			
			2	362.00	362.40	0.40	5.00			
	7/2/2015	2	3	364.00	364.40	0.40	5.00	25.40	75.31	3.10
			4	366.00	366.70	0.70	5.00			
			5	368.00	369.00	1.00	5.00			

WATER PERCOLATION / PACKER TEST REPORT

BORE HOLE NO.	DATE	TEST NO.	$\begin{gathered} \text { PRESSURE } \\ \text { IN } \\ \mathrm{Kg} / \mathrm{cm}^{2} \end{gathered}$	READING IN LTR.		TOTAL WATER LOSS (Itr.)	DURATION (Minutes)	WATER SWIVEL HEAD (m)	DIA. OFBORE HOLE(mm)	$\begin{aligned} & \text { TEST } \\ & \text { SECTION } \\ & (\mathrm{m}) \end{aligned}$
				FROM	TO					
2			1	203.00	205.40	2.40	5.00			
			2	207.00	209.90	2.90	5.00			
	19/01/2015	1	3	212.00	215.30	3.30	5.00	17.80	75.31	3.10
			4	216.00	219.80	3.80	5.00			
			5	221.00	225.10	4.10	5.00			
			1	230.00	230.60	0.60	5.00			
			2	232.00	233.10	1.10	5.00			
	20/01/2015	2	3	235.00	236.90	1.90	5.00	20.90	75.31	3.10
			4	239.00	241.50	2.50	5.00			
			5	243.00	246.20	3.20	5.00			
			1	250.00	251.00	1.00	5.00			
			2	253.00	254.00	1.00	5.00			
	22/01/2015	3	3	256.00	257.60	1.60	5.00	25.20	75.31	3.10
			4	260.00	262.00	2.00	5.00			
			5	265.00	268.00	3.00	5.00			
			1	270.00	270.00	0.00	5.00			
			2	272.00	273.20	1.20	5.00			
	23/01/2015	4	3	275.00	277.00	2.00	5.00	30.00	75.31	3.10
			4	280.00	282.20	2.20	5.00			
			5	284.00	286.90	2.90	5.00			

WATER PERCOLATION / PACKER TEST REPORT

$\begin{array}{\|c\|} \hline \text { BORE HOLE } \\ \text { NO. } \end{array}$	DATE	TEST NO.	$\begin{gathered} \text { PRESSURE } \\ \text { IN } \\ \mathrm{Kg} / \mathrm{cm}^{2} \end{gathered}$	READING IN LTR.		TOTAL WATER LOSS (ltr.)	DURATION (Minutes)	WATER SWIVEL HEAD (m)	DIA. OF BORE HOLE (mm)	TEST SECTION (m)
				FROM	TO					
-			1	290.00	290.90	0.90	5.00			
			2	293.00	294.20	1.20	5.00			
	26/01/2015	5	3	296.00	297.50	1.50	5.00	32.60	75.31	3.10
			4	300.00	302.00	2.00	5.00			
			5	305.00	307.70	2.70	5.00			
			1	310.00	310.50	0.50	5.00			
			2	312.00	313.00	1.00	5.00			
2	28/01/2015	6	3	314.00	315.30	1.30	5.00	35.50	75.31	3.10
			4	317.00	318.70	1.70	5.00			
			5	320.00	322.20	2.20	5.00			
			1	325.00	325.60	0.60	5.00			
			2	327.00	328.10	1.10	5.00			
	31/01/2015	7	3	330.00	331.40	1.40	5.00	39.70	75.31	3.10
			4	332.00	335.00	3.00	5.00			
			5	336.00	338.70	2.70	5.00			

No. of SP Test	-	Samples	Nos.	Commencement Date :	$3 / 2 / 2015$
No. of Vane(V) Test	-	Core collected	6	Completion Date :	$7 / 2 / 2015$
Length of Casing	3 m	Penetrometer (SPT)	-	Bore Hole Diameter :	150 mm
SPT done By	-	Disturbed	-	Level of Ground :	RL-28.600
Method of Boring	Drilling	Water Sample	1	Water Struct at : Standing Water Level :	1.70 m below GL 40.686

No. of SP Test	-	Samples	Nos.	Commencement Date :	$18 / 01 / 2015$
No. of Vane(V) Test	-	Core collected	15	Completion Date :	$30 / 01 / 2015$
Length of Casing	-	Penetrometer (SPT)	-	Bore Hole Diameter :	150 mm
SPT done By	-	Disturbed	-	Level of Ground :	RL-28.600
Method of Boring	Drilling	Water Sample	1	Water Struct at : Standing Water Level :	1.50 m below GL
40.686					

ANNEXURE-01 FIELD REPORT SITE - New Intake Point BORE HOLE NO. 01													
Date	Drilling		$\begin{aligned} & \text { Total } \\ & \text { Run } \end{aligned}$	\qquad	$\begin{aligned} & \% \text { of } \\ & \text { Core } \end{aligned}$	R.Q.D.		$\begin{gathered} \text { R.Q.D. } \\ \% \end{gathered}$	Water colour	$\begin{gathered} \text { Water } \\ \text { loss } \\ \text { (ltr.) } \\ \hline \end{gathered}$	Formation		Remarks
	From (m)	$\begin{array}{r} \text { To } \\ \text { (m) } \\ \hline \end{array}$				No. of 10 cm	Length m					Ground water level	
3/2/2015	0.00	1.70	1.70	NIL	-	-	-	-	Grey	-	Silty sand		
3/2/2015	1.70	3.20	1.50	0.20	13.33	-	-	-	White	FULL	Sand stone		
4/2/2015	3.20	4.70	1.50	1.00	66.67	3	0.61	40.67	Milky White	FULL	Granite	$\frac{\stackrel{0}{0}}{\square}$	
5/2/2015	4.70	6.90	2.20	2.13	96.82	8	1.5	68.18	Milky White	NIL	Granite	en	
6/2/2015	6.90	9.30	2.40	2.40	100.00	5	2.24	93.33	Milky White	NIL	Granite	$\begin{aligned} & \frac{1}{0} \\ & 0 \end{aligned}$	
7/2/2015	9.30	11.10	1.80	1.75	97.22	7	1.23	68.33	Milky White	NIL	Granite		
7/2/2015	11.10	12.60	1.50	1.50	100.00	5	1.5	100.00	Milky White	NIL	Granite		

ANNEXURE-02
SITE - New Intake Point

| Formation | |
| :---: | :---: | :---: |
| Ground | |
| water level | | Remarks

ANNEXURE-02
SITE - New Intake Point
兹

R E P OR T

O N

GEO-TECHNICAL INVESTIGATION FOR SOUTH GUWAHATI EAST WATER SUPPLY PROJECT

PREPARED BY
ESS FOUNDATION PVT.LTD.
BARTHAKUR MILL ROAD, ULUBARI,
GUWAHATI - 781007
DIAL NO : 0361-2525404, 94351-10953

R E P OR T

O N

GEO-TECHNICAL INVESTIGATION FOR SOUTH GUWAHATI EAST WATER SUPPLY PROJECT

PREPARED BY
ESS FOUNDATION PVT.LTD.
BARTHAKUR MILL ROAD , ULUBARI.
GUWAHATI-781007
DIAL NO : 0361 - 2525404, 94351-10953

1. INTRODUCTION

1.1 General

The soil investigation work was carried out during the month of August - 2012 at the Proposed site for South Guwahati East Supply Project. Besides boring, Standard Penetration Tests at specified intervals were also performed as per I.S. specifications,undisturbed as well as disturbed samples,rock samples were collected from the bore-holes for classification of soil, shear strength tests and all other relevent tests were performed to determine the safe bearing capacity of the soil.

1.2. Objective :

The objective of the report is restricted to the collection of factual information during the investigation period and submission of laboratory tests results,so as to sequence,extent of soil stratification,bearing capacity of soil,to ascertain the design parameters for the foundations from the recommended safe bearing capacity of foundation soil.

1.3 Planning And Soil Exploration :

On the basis of nature of work it was decided to carry out soil exploration in order to :
b) Obtain soil samples, both representative disturbed and undisturbed wherever necessary for classification and other laboratory tests for determining engineering properties of soil strata.
c) Obtain soundings of penetration resistance by standard Penetration test in the bore holes.

1.4 Design criteria For Footings :

i) Footing must be safe against shear failure of supporting soil.
ii) Footing must not settle more than permissible limit of settlement.

Net safe bearing capacity 'qns' is obtained by using the S.P.T value of foundation \& the relevant shear parameters of soil. Factor of safety of 2.5 is applied on ultimate bearing capacity as recommended by B.I.S. Net loading intensity 'qns' is obtained by using physical characteristics of foundation \& relevant compressibility characteristics of the underlying soil . The settlement so obtained shall be with in permissible limits as per BIS recommendations.

The computed values i.e. 'qns' as the allowable bearing capacity for designing foundations of structure is adopted after settlement criteria is satisfied or within the permissible limit .

1.5 Sub soil water level

The sub soil water level is encountered at various bore holes as shown in Bore Hole logs.

2. DETAILS OF FIELD WORK

2.1 Boring operation \& Sampling :

150 mm dia hole was advanced at the location Using shell and auger/Drilling method.
150 mm nominal dia flush steel casing was advanced with the boring and the full length of the bore hole was encased at each location.

2.2 Disturbed and Undisturbed Sample :

Disturbed and undisturbed soil samples were obtained depending upon the nature of soil from different depths in the bore hole. The undisturbed samples were collected in sampling tubes. The ends of the tubes are sealed with molten wax to prevent evaporation. These samples were subsequently tested in the laboratory so as to determine the various index and engineering proportion of various sub soil strata met in the bore holes.

2.3 Standard Penetration Test

Standard Penetration test was performed in the boreholes. The standard split spoon sampler, attached to a string of drill rods was lowered to the bottom of the hole and allowed to rest under self weight. The drill rods were connected to driving assembly which consisted of a hoisting equipments, a drive weight (Hammer) of 65 Kg , and a guide to ensure a 75 cm free fall of hammer on an anvil. The number of hammer blows that were required to penetrate the sampler through three runs of 150 mm each were recorded. Initial driving of 150 mm was disregarded and the number of blows required to drive the sampler through the remaining 300 mm is called BLOW COUNT or PENETRATION NUMBER,N. At the end of the test, the sampler was withdrawn and the soil extracted for subsequent testing in the laboratory. If the penetration was less than 30 cm for 100 blows, it is considered as refusal and the actual penetration was recorded.

Correction of ' N ' value :
In case of Sandy soil \& Non plastic silts, the observed SPT values, designated as ' N ', are to be corrected to account for the following two effects.
(i) Correct to account for the effect of overburden pressure.
$\mathrm{N}^{\prime}=\mathrm{Cn} \times \mathrm{N}$
Cn^{\prime} is overburden pressure correction and is calculated from the figure No. 1 given on page No. 8 in IS : 2131-1981.
(ii) Correction due to submergence Correction.
$\mathrm{N}^{\prime \prime}=15+\left(\mathrm{N}^{\prime}-15\right) / 2$ provided N^{\prime} is >15 where $\mathrm{N}^{\prime \prime}$ is the final corrected value where ever both the overburden and submergence corrections are necessary the overburden correction is applied first correction of N values of Bore Hole.

3.0 LABORATORY TESTS :

3.1 Index Properties

All the relevant classification on the samples obtained from the bore holes were carried out in the laboratory. The index properties obtained from such classification tests at different depths in the bore holes are reported.

3.2 DISTURBED SOIL SAMPLES:

Disturbed soil sample collected in field have been tested in laboratory and preparation of sample for the under mentioned tests have been done in accordance with I.S.2720-(Part-I)-1983.

1. Sieve analysis test as per I.S. Specification No. 2720 --(Part-IV).
2. Atterburg limit test (L.L. \& P.I.) as per I.S. Specification No. 2720 --(Part-II).
3. Natural moisture content as per I.S.Specification No. 2720 - (Part-IV).
4. Particle size analysis test as per I.S.Specification No. 2720-(Part-VI).
5. Wet density test as per I.S.Specification No 2720- (Part-VI).
6. Dry density test as per I.S.Specification No. 2720- (Part-VI)
7. Specific Gravity test as per I.S.Specification No-2720-(Part-III)-Sec.2.

3.3 UNDISTURBED SOIL SAMPLES:

Undisturbed Soil samples have been prepared in accordance with I.S. Specification No. 2720-(Part-I)- 1983 and tested as follows:-

1. Sieve analysis test as per I.S. Specification No. 2720 --(Part-IV).
2. Atterburg limit test (L.L. \& P.I.) as per I.S. Specification No. 2720 --(Part-II).
3. Natural moisture content as per I.S.Specification No. 2720 - (Part-IV).
4. Particle size analysis test as per I.S.Specification No. 2720-(Part-VI).
5. Wet density test as per I.S.Specification No 2720- (Part-VI).
6. Dry density test as per I.S.Specification No. 2720- (Part-VI)
7. Specific Gravity test as per I.S.Specification No-2720-(Part-III)-Sec.2.
8. Triaxial compression test and determination of shear parameter
(C \& \varnothing as per I.S. XII) \& I.S. 2720 - (part - XIII).
9. Consolidation test conducted as per I.S Specification No. 2720-(Part-XV).

Calculation of bearing capacity is governed generally by I.S. Specification No . 8009-)Part-I)1976, I.S.No.2720- (Part - II)- 1980, I.S. No 6403-1981, I.S. 1904-1978 and I.S. 1080-1985 and other relevant I.S. Codes as well as based on assessment and latest developments.

DELETERIOUS CHEMICALS:

The nature of strata was fairly identical through the site therefore one representative soil sample from each location was prepared \& tested for deleterious chemicals which may effective the concrete \& reinforcement the results are given in tabular form.

$$
\text { Part - } 3
$$

AT RAW WATER PUMPING MAIN ALIGNMENT

BORE HOLE LOG DATA SHEET
Bore Hole No.: 09

No. of SP Test	6	Samples	Nos.	Commencement Date :	$28 / 08 / 2012$
No. of Vane(V) Test	2	Undisturbed (UDS)	3	Completion Date :	$29 / 08 / 2012$
Length of Casing	3.0	Penetrometer (SPT)	6	Bore Hole Diameter:	150 mm
SPT done By	M	Disturbed	6	Level of Ground :	RL-51.959 m
Method of Boring	Drilling	Water Sample	1	Water Struct at :	
				Standing Water Level :	RL-51.159 m

BORE HOLE LOG DATA SHEET
Bore Hole No.:

No. of SP Test	6	Samples	Nos.	Commencement Date :	$30 / 08 / 2012$
No. of Vane(V) Test	2	Undisturbed (UDS)	3	Completion Date :	$31 / 08 / 2012$
Length of Casing	3.0	Penetrometer (SPT)	6	Bore Hole Diameter :	150 mm
SPT done By	M	Disturbed	6	Level of Ground :	RL-51.644 m
Method of Boring	Drilling	Water Sample	1	Water Struct at :	
				Standing Water Level :	RL-51.644 m

CHEMICAL ANALYSIS OF SOIL:

Sample No.	P^{H} Value	Chlorides (as CI)	Sulphate (as SO4)	Other organic Content	Reaction to acid
1	6.8	65	64	19	Nil
2	6.7	66	61	21	Nil
3	6.7	67	59	23	Nil

CHEMICAL ANALYSIS OF SUB-SOIL WATER:

Sample No.	P^{H} Value	Chlorides (as CI)	Sulphate (as SO4)	Other organic Content
1	6.5	66	61	32
2	6.6	68	64	27
3	6.6	65	62	23

The above results show that the strata is quite safe for Concrete \mathcal{E} Reinforcement for the site.

INTERPRETATION OF TEST RESULTS:

The exact choice of type of foundation shall depend on the relative economics and practical considerations.

The safe load carrying capacity of a bored cast in-situ concrete pile in cohesive soil layer shall be governed by IS: 2911 (Part I/Sec2) - 1979 code of practice for determination of allowable pile load capacitye of pile foundation for structural safety of Structures.

STANDARD PENETRATION TEST

The field S.P.T is corrected for both Over burden pressure and for dilatancy (As per IS:2131-1982)

B. H No.	Depth (m)	Over burden Pressure $\mathrm{kg} / \mathrm{cm}^{2}$	No. of Blows Recorded at field for Penetration			N -value	Corrected Nvalue
			15 cm	30 cm	45 cm		
9	1.5	0.150	2	2	4	6	9
	3.0	0.300	2	4	4	8	11
	4.5	0.450	2	2	3	5	6
	6.0	0.600	4	5	5	10	11
	7.5	0.750	3	5	6	11	12
	9.0	0.900	5	6	7	13	13
10	1.5	0.150	1	1	2	3	5
	3.0	0.300	3	5	7	12	16
	4.5	0.450	4	7	8	15	17
	6.0	0.600	4	7	7	14	16
	7.5	0.750	5	7	8	15	16
	9.0	0.900	4	4	5	9	9

PILE LOAD CAPACITY

The safe load carrying capacity of concrete bored cast in-situ piles (Qs) in cohesive soil has been calculated out using the following formula as per IS: 2911 (Part I/Sec2) - 1979

$$
\begin{aligned}
\mathrm{Qs} & =\left(\mathrm{ApNc} \mathrm{Cp}+\alpha \mathrm{C}^{\prime} \mathrm{As}\right) / \mathrm{F} \\
\text { Where } \mathrm{Ap} & =\text { cross sectional area of pile toe in } \mathrm{cm}^{2} \\
\mathrm{Nc} & =\text { bearing capacity factor } \\
\mathrm{Cp} & =\text { average cohesion at pile tip in } \mathrm{kg} / \mathrm{cm}^{2} \\
\alpha & =\text { reduction factor } \\
\mathrm{C}^{\prime} & =\text { average cohesion throughout the length of pile in } \mathrm{kg} / \mathrm{cm}^{2} \\
\mathrm{As} & =\text { surface area of pile shaft in } \mathrm{cm}^{2} \\
\mathrm{~F} & =\text { factor of safety }
\end{aligned}
$$

For Borehole No. 9

$\mathrm{L}=$ Length of pile $=900 \mathrm{~cm}$
Lne $=$ Non-effective length of pile $=150 \mathrm{~cm}$
Le $=$ Effective length of pile $=900-150=750 \mathrm{~cm}$
$\mathrm{D}=40 \mathrm{~cm}$
$\mathrm{Ap}=(3.1415 / 4) \times 40^{\wedge} 2=1,256.64 \mathrm{~cm}^{2}$

As $=3.1415 \times 40 \times 750=94,247.78 \mathrm{~cm}^{2}$
$\mathrm{Cp}=0.560 \mathrm{~kg} / \mathrm{cm}^{2}$
$\mathrm{C}^{\prime}=0.480 \mathrm{~kg} / \mathrm{cm}^{2}$
$\mathrm{Nc}=9$
$\alpha=0.5$
$\mathrm{F}=2.5$

Qs $=(1,256.64 \times 9 \times 0.56+0.5 \times 0.48 \times 94,247.78) / 2.5$
$=11581.17 \mathrm{~kg}=11.58$ ton

RECOMMENDATION:

From field and laboratory investigations, it is found that the soil is clayey in nature and in loose state,so the soil is unsuitable for shallow foundation. From the structural point of view it is recommended to addopt pile foundation which is tabulated below as per requirement of pile capacity.

Length of Pile $=9.0 \mathrm{~m}$ from cutoff level)

Type of Pile	B. H No.	Diameter Of Pile (cm)	Pile Load Capacity (ton)	Recommended Pile Load Capacity (ton)	
				40 cm dia.	60 cm dia.
Cast-in-situ R.C.C Bored Concrete Pile	9	40.00	10.55 ? ?	10.00	17.00
		60.00	17.65		
Cast-in-situ R.C.C Bored Concrete Pile	10	40.00	11.58		
		60.00	19.27		

However, the theoretical load carrying capacity of pile is to be verified by conducting load test on pile.
RESULTS OF LABORATORY TEST

	$\begin{aligned} & \dot{0} \\ & \underset{N}{n} \\ & \stackrel{N}{n} \\ & \frac{i}{n} \end{aligned}$	2$\frac{2}{4}$$\frac{2}{4}$$\frac{1}{4}$2		$\begin{aligned} & \stackrel{e}{e} \\ & \frac{1}{4} \\ & \frac{1}{2} \\ & 0 \\ & \frac{x}{4} \\ & 3 \\ & 3 \end{aligned}$	DENSITY		0$\frac{O}{2}$$\vdots$00	$\begin{aligned} & \frac{2}{3} \\ & \frac{2}{3} \\ & \frac{2}{U} \\ & \frac{1}{n} \end{aligned}$	LIMITS (\%)			GRAIN SIZE ANALYSIS (\%)				SHEAR TEST	
									$\begin{aligned} & 0 \\ & \frac{0}{2} \end{aligned}$	$\frac{4}{4}$	है 2 $\frac{3}{2}$ $\frac{3}{2}$ 2	-	$\stackrel{\rightharpoonup}{E}$	$\stackrel{\square}{\omega}$	$\frac{\text { s }}{u}$	$\begin{gathered} c \\ \left(\mathrm{~kg} / \mathrm{cm}^{2}\right) \end{gathered}$	$\begin{gathered} \phi \\ \text { Degree } \end{gathered}$
9	1	1.50	DS	33.53	1.41	1.88	0.89	2.66	40.55	28.36	12.19	-	6.00	25.00	69.00	-	-
	2	2.00	UDS	32.18	1.44	1.90	0.85	2.66	40.18	26.43	13.75	-	4.00	26.00	70.00	0.33	-
	3	3.00	DS	34.56	1.40	1.88	0.90	2.66	38.65	28.95	9.70	-	5.00	23.00	72.00	-	-
	4	3.50	UDS	33.08	1.45	1.93	0.83	2.66	39.78	29.78	10.00	-	3.00	22.00	75.00	0.39	-
	5	4.50	DS	37.85	1.39	1.92	0.91	2.66	39.40	27.45	11.95	-	6.00	24.00	70.00	-	-
	6	6.00	DS	37.32	1.40	1.92	0.91	2.67	40.22	26.98	13.24	-	3.00	25.00	72.00	-	-
	7	6.50	UDS	34.18	1.42	1.91	0.87	2.66	40.68	28.10	12.58	-	6.00	26.00	68.00	0.42	-
	8	7.50	DS	36.23	1.41	1.92	0.89	2.66	38.76	27.36	11.40	-	5.00	26.00	69.00	0.46	-
	9	9.00	DS	37.30	1.40	1.92	0.91	2.67	37.29	28.14	9.15	-	7.00	23.00	70.00	0.54	-

RESULTS OF LABORATORY TEST

$\begin{aligned} & 5 \\ & i n \\ & \hline \end{aligned}$	$\theta \stackrel{\text { む }}{0}$	$\stackrel{\infty}{\infty}$	，	1	，	，	1	1	＇	＇	＇
$\frac{\stackrel{y}{4}}{\frac{1}{4}}$		，	1	\hat{n}	1	$\stackrel{\sim}{\circ}$	1	$\stackrel{n}{0}$	，	，	\cdots
$\begin{aligned} & \frac{0}{0} \\ & \frac{n}{n} \\ & \frac{1}{x} \\ & \frac{n}{x} \\ & \frac{n}{n} \\ & \frac{z}{4} \\ & \underset{y}{x} \end{aligned}$	ABID	8	$\stackrel{8}{\square}$	$\begin{aligned} & 8 \\ & 8 . \end{aligned}$	$\begin{aligned} & 8 \\ & \text { i } \end{aligned}$	$\begin{aligned} & 8 . \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & i \\ & i \end{aligned}$	$\frac{8}{i}$	$\begin{aligned} & 8 \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$
	H！S	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \text { 8} \\ & \stackrel{1}{n} \end{aligned}$	$\begin{aligned} & 8 \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & 8 . \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { B. } \\ & \underset{\sim}{j} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & 8 \\ & \text { ì } \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{y}{4} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \dot{\sim} \end{aligned}$
	pues	$\frac{8}{\mathrm{o}}$	$\begin{aligned} & 8 \\ & \dot{\gamma} \end{aligned}$	$\stackrel{8}{\dot{\sim}}$	$\underset{m}{8}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	8	$\begin{aligned} & 8 \\ & \dot{+} \end{aligned}$	$\underset{\infty}{8}$	$\begin{aligned} & 8 \\ & i \\ & i \end{aligned}$	8.
	ןлe．9	＇	＇	＇	1	，	，	1	1	＇	1
$\begin{aligned} & \frac{0}{0} \\ & \frac{n}{5} \\ & \end{aligned}$	IGNI XLIDILSV＇d	，	$\stackrel{\infty}{\sim}$	$\begin{aligned} & \hat{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{a} \\ & \hat{y} \end{aligned}$	べへ	$\begin{aligned} & \curvearrowleft \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { oे } \\ & 0 \end{aligned}$	犬	$\frac{m}{0}$	$\stackrel{\text { I }}{=}$
	OILSVTd	，	$\stackrel{\sim}{n}$	$\frac{n}{N}$	$\begin{aligned} & \text { ले } \\ & \text { ๗े } \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \bar{\infty} \\ & \stackrel{1}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \text { mे } \\ & \text { è } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{+}{\mathrm{N}} \end{aligned}$	$\frac{n}{n}$	$\stackrel{\infty}{\circ}$
	のІПอั7	1	\cdots	$\underset{\text { N}}{\text { N }}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{m}} \\ & \text { oे } \end{aligned}$	$\frac{\infty}{\dot{\gamma}}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\text { Nे}}{\text { ले }}$	$\begin{aligned} & n \\ & \infty \\ & \infty \\ & n \end{aligned}$	$\underset{\sim}{\infty} \underset{\sim}{\text { i }}$	cioc
	ALIAVED＇dS	$\stackrel{\rightharpoonup}{\mathrm{o}}$	$\begin{aligned} & \bullet \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { i } \end{aligned}$	$\begin{aligned} & \hat{b} \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & \text { i } \end{aligned}$	$\begin{aligned} & \bullet \\ & \stackrel{0}{i} \end{aligned}$	$\stackrel{\rightharpoonup}{6}$	$\begin{aligned} & \text { ® } \\ & \text { i } \end{aligned}$	$\stackrel{\hat{c}}{i}$	$\begin{aligned} & \hat{0} \\ & i \end{aligned}$
	OILVE GIOA	$\stackrel{\sim}{\infty}$	$\stackrel{+}{\infty}$	$\stackrel{\circ}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{0}{\infty}$	\cdots	$\begin{aligned} & \infty \\ & \infty \\ & 0 \end{aligned}$	${ }_{\substack{\infty \\ 0 \\ \hline}}$	$\underset{\infty}{\infty}$	$\underset{\sim}{\infty}$
$\frac{\hbar}{n}$	（50／せ\％）LЗM	$\stackrel{\infty}{\oplus}$	כ－	§	$\stackrel{\sim}{\square}$	\pm	¢	－	$\stackrel{\sim}{\sim}$	§	§
		$\stackrel{\square}{-}$	そ	$\stackrel{\infty}{-}$	$\stackrel{\text { T }}{-}$	ๆ	$\stackrel{\text { ヲ }}{\text {－}}$	\pm	$\stackrel{\sim}{\square}$	－	$\stackrel{\text {－}}{-}$
（\％）LNGLNOつ UGLVM		N゙	$\frac{0}{9}$	$\stackrel{i}{n}$	$\begin{aligned} & \text { n } \\ & \underset{m}{n} \end{aligned}$	$\begin{aligned} & \underset{寸}{\mathrm{~g}} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \bar{n} \\ & \underset{m}{n} \end{aligned}$	$\begin{aligned} & \dot{\infty} \\ & \text { ci } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{c} \\ & \stackrel{y}{+} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { b. } \\ & \text { in } \end{aligned}$	$\frac{\mathrm{N}}{\mathrm{N}}$
NOILdİOSAG JGİG		\cong	๑	$\stackrel{\infty}{5}$	\sim	$\stackrel{\sim}{\circ}$	\sim	$\stackrel{\sim}{\square}$	\sim	¢	5
St3law NI HLdAG		n	$\stackrel{8}{\mathrm{o}}$	$\begin{aligned} & i \\ & \text { in } \end{aligned}$	$\stackrel{\circ}{\sim}$	$\begin{aligned} & 8 \\ & \dot{n} \end{aligned}$	8	\％	$\xrightarrow{\circ}$		n
	＇ON G7dWVS	－	N	m	\checkmark	n	\bigcirc	N	∞	\bigcirc	응
ON 770 O 3809		은									

SHEAR TEST GRAPH

BH NO:
$\mathrm{C}=0.33 \mathrm{kgf} / \mathrm{cm}^{2}$

DEPTH: 2.0 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 9
$\mathrm{C}=0.39 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 3.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO:	9	$\mathrm{C}=$
DEPTH: 6.5 m	$\Phi=0.42 \mathrm{kgf} / \mathrm{cm}^{2}$	
0.0		

SHEAR TEST GRAPH

BH NO: 9

$$
\begin{aligned}
& C=0.46 \mathrm{kgf} / \mathrm{cm}^{2} \\
& \Phi=0.0^{\circ}
\end{aligned}
$$

SHEAR TEST GRAPH

BH NO: 9
$C=0.54 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 9.0 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 10
$C=0.37 \mathrm{kgf} / \mathrm{cm}^{2}$

DEPTH: 3.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 10

$$
\begin{aligned}
& \mathrm{C}=0.45 \mathrm{kgf} / \mathrm{cm}^{2} \\
& \Phi=0.0^{\circ}
\end{aligned}
$$

Abstract

SHEAR TEST GRAPH

BH NO: 10 DEPTH: 6.5 m $\mathrm{C}=0.53 \mathrm{kgf} / \mathrm{cm}^{2}$ $\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 10
DEPTH: 9.5 m
$\mathrm{C}=0.56 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=0.0^{\circ}$

$$
\text { Part - } 4
$$

AT RIVER PROTECTION WORKS LOCATION

Bore Hole No.: 07

No. of SP Test	2	Samples	Nos.	Commencement Date :	24/08/2012
No. of Vane(V) Test	.	Undisturbed (UDS)	1	Completion Date :	0/0
Length of Casing	3.0	Penetrometer (SPT)	2	Bore Hole Diameter :	150 mm
SPT done By	M	Disturbed	2	Level of Ground :	RL-50.002 m
Method of Boring	Drilling	Water Sample	1	Water Struct at : Standing Water Level :	RL-48.082 m

BORE HOLE LOG DATA SHEET
Bore Hole No.:

. of SP Test	6	Samples	Nos.	Commencement Date :	18/08/2012
No. of Vane(V) Test		Undisturbed (UDS)		Completion Date	23/08/2012
Length of Casing	3.0	Penetrometer (SPT)	6	Bore Hole Diameter :	150 mm
SPT done By	M	Disturbed	6	Level of Ground	RL-48.500 m
Method of Boring	Drilling	Water Sample	1	Water Struct at : Standing Water Level :	RL-47.700 m

CHEMICAL ANALYSIS OF SOIL:

Sample No.	P^{H} Value	Chlorides (as CI)	Sulphate (as SO4)	Other organic Content	Reaction to acid
1	6.8	63	59	17	Nil
2	6.8	65	62	19	Nil
3	6.7	67	60	21	Nil

CHEMICAL ANALYSIS OF SUB-SOIL WATER:

Sample No.	P^{H} Value	Chlorides (as CI)	Sulphate (as SO4)	Other organic Content
1	6.7	65	58	35
2	6.7	64	61	33
3	6.7	66	64	29

The above results show that the strata is quite safe for Concrete \mathcal{E} Reinforcement for the site.

FOUNDATION PARAMETERS.

Allowable Bearing capacity values are based on the following parameters :

Square footings.

Depth of footings $\left(D_{f}\right)=3.0$ metre.
Size of footings (B) $=2.0$ metre.
The safe load carrying capacity of a bored cast in-situ concrete pile in cohesive soil layer shall be governed by IS: 2911 (Part I/Sec2) - 1979 code of practice for determination of allowable pile load capacitye of pile foundation for structural safety of Structures.

STANDARD PENETRATION TEST

The field S.P.T is corrected for both Over burden pressure and for dilatancy (As per IS:2131-1982)

B. H No.	Depth (m)	Over burden Pressure $\mathrm{kg} / \mathrm{cm}^{2}$	No. of Blows Recorded at field for Penetration			N -value	Corrected N value
			15 cm	30 cm	45 cm		
7	1.5	0.150	1	1	2	3	5
	3.0	0.300	5	13	28	41	35
8	1.5	0.150	1	1	2	3	5
	3.0	0.300	2	2	3	5	7
	4.5	0.450	2	3	3	6	7
	6.0	0.600	2	3	4	7	8
	7.5	0.750	4	4	5	9	10
	9.0	0.900	13	19	23	42	29

COMPUTATION OF ALLOWABLE BEARING CAPACITY

A) Based on Standard Penetration Resistance value:

$$
\begin{aligned}
& \mathrm{q}_{\text {ns }} \quad=\quad\left(\left(\mathrm{q}\left(\mathrm{~N}_{\mathrm{q}}-1\right) \mathrm{s}_{\mathrm{q}} \mathrm{~d}_{\mathrm{q}} \mathrm{i}_{\mathrm{q}}+0.5 \mathrm{~B} \gamma \mathrm{~N}_{y} \mathrm{~s}_{\gamma} \mathrm{d}_{y} \mathrm{i}_{y} \mathrm{~W}^{\prime}\right) / \mathrm{F}\right) \times 10 \mathrm{t} / \mathrm{m}^{2} \\
& \text { Where } \\
& \mathrm{N}_{\mathrm{q}}, \mathrm{~N}_{\gamma} \quad=\text { Bearing capacity factors } \\
& \mathrm{S}_{q}, \mathrm{~S}_{y} \quad=\text { Shape factors } \\
& \text { For square } \quad s_{q}=1.2 \quad s_{\gamma}=1 \\
& \text { footing } \\
& \mathrm{B}=\text { Width dia of foundation in } \mathrm{cm} \\
& d_{q}=d_{\gamma}=\text { Depth factors }=1.00 \text { for } \phi<10^{\circ} \\
& =1+0.1\left(D_{f} / B\right) \times \text { sqrt }\left(N_{\phi}\right) \text { for } \phi>10^{0} \\
& \phi \quad=\text { Angle of shearing resistance of soil in degrees } \\
& N_{\phi}=\tan ^{2}\left(45^{\circ}+\phi / 2\right) \\
& D_{f}=\text { Depth of foundation in } \mathrm{cm} \\
& N_{\phi}=\tan ^{2}\left(45^{\circ}+\phi / 2\right)=1 \\
& \mathrm{i}_{\mathrm{q}}=\text { Inclination factors }=(1-(\alpha / 90))^{2} \\
& \mathrm{i}_{y}=\text { Inclination factor }=(1-(\alpha / \phi))^{2} \\
& \alpha=\text { Inclination of the load to the vertical in degrees } \\
& \mathrm{q}=\text { Effective surcharge at the base level of foundation in } \mathrm{kgf} / \mathrm{cm}^{2} \\
& \gamma=\text { Bulk unit weight of foundation soil in } \mathrm{kgf} / \mathrm{cm}^{3} \\
& \mathrm{~W}^{\prime}=\mathrm{Water}^{\prime} \text { table correction factor } \\
& \mathrm{F}=\text { Factor of safety }
\end{aligned}
$$

For BH.NO - 7

B) FROM C-Ø VALUE :

For bearing capacity the following formula has been adopted as per I.S: 6403-1981.

$$
\left.\mathrm{q}_{\mathrm{s}} \quad=\quad\left(\mathrm{c} 5.14 \mathrm{~s}_{\mathrm{c}} \mathrm{~d}_{\mathrm{c}} \mathrm{i}_{\mathrm{c}}\right) / \mathrm{F}\right) \times 10 \mathrm{t} / \mathrm{m}^{2} \quad(\text { when } \phi=0)
$$

For Local Shear Failure

$$
\mathrm{q}_{\mathrm{s}} \quad=\quad\left(\left(2 / 3 \mathrm{cN}_{\mathrm{c}}^{\prime} \mathrm{s}_{\mathrm{c}} \mathrm{~d}_{\mathrm{c}} \mathrm{i}_{\mathrm{c}}+\mathrm{q}\left(\mathrm{~N}_{\mathrm{q}}^{\prime}-1\right) \mathrm{s}_{\mathrm{q}} \mathrm{~d}_{\mathrm{q}} \mathrm{i}_{\mathrm{q}}+0.5 \mathrm{~B} \gamma \mathrm{~N}_{\gamma}^{\prime} \mathrm{s}_{\gamma} \mathrm{d}_{\gamma} \mathrm{i}_{\gamma} \mathrm{W}^{\prime}\right) / \mathrm{F}\right) \times 10 \mathrm{t} / \mathrm{m}^{2}
$$

For Borehole No. 7

$\mathrm{B}=300 \mathrm{~cm}$
At depth $\mathrm{D}_{\mathrm{f}}=300 \mathrm{~cm}$
$\phi=33.00^{\circ} \phi_{\text {cor }}=29.85^{\circ}$ Say $\quad 29^{\circ} \quad \mathrm{C}=0.00$
For $\phi=29^{\circ} \quad \mathrm{N}_{\mathrm{q}}=16.44 \quad \mathrm{~N}_{\gamma} \quad=19.33$

$$
\mathrm{s}_{\mathrm{q}}=1.20 \quad \mathrm{~s}_{\mathrm{y}}=0.80
$$

$\mathrm{d}_{\mathrm{q}}=\mathrm{d}_{\gamma}=1+0.1(300 / 300) \times \tan (45+29 / 2)=1.17$
$\mathrm{s}_{\mathrm{c}}=1.30$
$d_{c}=1+0.2(300 / 300) \times \tan (45)=1.20$
$\alpha=0^{\circ} \quad i_{q}=i_{\gamma}=1.00=$ ic
$\gamma=0.00200 \mathrm{kgf} / \mathrm{cm}^{3}$
$\gamma^{\prime}=0.00100 \mathrm{kgf} / \mathrm{cm}^{3} \quad \mathrm{q}=0.001 \times 300=0.300 \mathrm{kgf} / \mathrm{cm}^{2}$
$W^{\prime}=0.50$
$\mathrm{F}=3$
$\mathrm{q}_{\mathrm{s}}=\{2 / 3 \times 0.00 \times 0.00 \times 1.30 \times 1.20 \times 1.00+0.300 \times(16.44-1) \times 1.20 \times 1.17 \times 1.00+0.50 \times$ $300 \times 0.00200 \times 19.33 \times 0.8 \times 1.17 \times 1.00 \times 0.5\} / 3 \times 10$
$=30.72 \mathrm{t} / \mathrm{m}^{2}$

PILE LOAD CAPACITY

The safe load carrying capacity of a bored cast in-situ concrete pile passing through clayey soil layer and resting on granular soil has been worked out by using the following formular as per IS: 2911 (Part I/Sec 2) -1979
$Q_{s} \quad=\left(\left(\operatorname{Ap}\left(0.5 \mathrm{D} \gamma \mathrm{N}_{\mathrm{y}}+\mathrm{P}_{\mathrm{D}} \mathrm{N}_{\mathrm{q}}\right)+\alpha \mathrm{C}^{\prime} \mathrm{As}\right) / \mathrm{F}\right) / 1000 \mathrm{t}$
Where $\quad A_{p}=$ Cross sectional area of pile stem at toe level in cm^{2}
D $=$ Stem diameter in cm
$\gamma=$ Effective unit weight of soil at pile toe in $\mathrm{kgf} / \mathrm{cm} 3$
$P_{D}=$ Effective overburden pressure at pile toe in $\mathrm{kgf} / \mathrm{cm}^{2}$
$\mathrm{N} \gamma \& \mathrm{~N}_{\mathrm{q}}=$ Bearing capacity factors depending upon the angle of internal friction f at toe
$\alpha=$ Reduction factor
$\mathrm{C}^{\prime}=$ Average cohesion of the soil along the pile stem in $\mathrm{kgf} / \mathrm{cm}^{2}$
$\mathrm{A}_{\mathrm{s}}=$ Surface area of the stem in cm^{2}
$\mathrm{F}=$ Factor of safety

PILE LOAD CAPACITY CALCULATION

For Borehole No. 8

Length of pile $=1100 \mathrm{~cm}$
$D=40 \mathrm{~cm}$

Effective pile length for overburden pressure $=20 \times 40=800 \mathrm{~cm}$
$\gamma \quad=0.001 \mathrm{kgf} / \mathrm{cm}^{2}$
$P_{D}=0.80 \mathrm{kgf} / \mathrm{cm}^{2}$
$\phi=45^{\circ}$
$\mathrm{N}_{\mathrm{y}}=271.75$
$\mathrm{N}_{\mathrm{q}}=347.0$
$\alpha=0.5$


```
C
Ap}=(3.1415/4)\times40^2=1,256.64\mp@subsup{\textrm{cm}}{}{2
```

Effective shaft length $=950 \mathrm{~cm}$

```
As}=119,380.52\mp@subsup{\textrm{cm}}{}{2
F=2.5
Qs}=((1.256.64\times(0.5\times40\times0.001\times271.75+0.8\times347)+0.5\times0.36\times119.380.52)/2.5)/100
    =150.86 ton
```


RECOMMENDATION:

From field and laboratory investigations, the following recommendations have been made for the purpose of design of foundation.
A) In the area tentitively covered by Bore Hole No.07,the rock formation is found 3.0 m below the ground surface which is suitable for shallow foundation and economic.So it is recommended to lay the foundation in this area over rock bed surface considering net safe bearing capacity $30.0 \mathrm{t} / \mathrm{m}^{2}$ for design of foundation.
B) In the area which is covered by Bore Hole No.08,the rock bed is found nearly 11.0 m beneath the ground surface and from the structural point of view Pile foundation is required forthis area. So it is recommended to addopt pile foundation which is tabulated below as per requirement of pile capacity.

Length of Pile $=11.0 \mathrm{~m}$ from cutoff level)

Type of Pile	B.H No.	Diameter Of Pile (cm)	Pile Load Capacity (ton)	Recommended Pile Load Capacity (ton)	
		40.00	150.86	40 cm dia.	60 cm dia.
Cast-in-situ R.C.C Bored Concrete Pile	8	60.00	493.05	150.00	493.00

However,the theoretical load carrying capacity of pile is to be verified by conducting load test on pile.
RESULTS OF LABORATORY TEST

SYyVNJy	,	'	,	,	'
$\begin{array}{r} \left(z^{w 5 / \delta\rangle}\right) \\ \text { dWOO TVIXVIN } \end{array}$	$\begin{aligned} & \text { O} \\ & \text { ® } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { } \\ & \text { u } \\ & \tilde{ \pm} \end{aligned}$	$\begin{gathered} \underset{\sim}{ \pm} \\ \underset{寸}{寸} \end{gathered}$	$\begin{aligned} & \underset{\sim}{\dot{\infty}} \\ & \stackrel{\alpha}{2} \end{aligned}$	¢ $\stackrel{\sim}{\square}$ \sim
(00/u\%) ALISNGU	$\frac{\stackrel{\rightharpoonup}{m}}{}$	$\underset{\sim}{\sim}$	\cdots	$\stackrel{\infty}{\circ}$	\cdots

RESULTS OF LABORATORY TEST

$\begin{aligned} & \dot{0} \\ & \frac{\lambda}{n} \\ & \hat{\lambda} \\ & \frac{N}{n} \end{aligned}$	$\begin{aligned} & \frac{n}{x} \\ & \frac{1}{4} \\ & \frac{2}{2} \\ & \frac{1}{4} \\ & \frac{1}{n} \end{aligned}$	BRIEF DESCRIPTION	$\begin{aligned} & \frac{0}{2} \\ & \frac{5}{4} \\ & \frac{3}{3} \\ & 8 \\ & \frac{x}{4} \\ & \frac{3}{3} \end{aligned}$	DENSITY		$\begin{aligned} & \frac{0}{2} \\ & \frac{1}{2} \\ & \frac{0}{0} \end{aligned}$		LIMITS（\％）			GRAIN SIZE ANALYSIS（\％）				SHEAR TEST	
							$\begin{aligned} & \underset{2}{2} \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\frac{0}{2}$	$\frac{4}{5}$	PLASTICITY INDI	$\begin{aligned} & \text { ָ̄ } \\ & \text { ت゙ } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { J } \\ & \text { تِ } \end{aligned}$	玄	$\frac{\pi}{U}$	$\underset{\left(\mathrm{kg} / \mathrm{cm}^{2}\right)}{\mathrm{c}}$	$\begin{gathered} \phi \\ \text { Degree } \end{gathered}$
1	1.50	DS	42.68	1.32	1.89	1.01	2.66	39.23	28.71	10.52	－	5.00	24.00	71.00	－	－
2	3.00	DS	43.17	1.32	1.89	1.01	2.66	38.72	27.11	11.61	－	3.00	28.00	69.00	0.28	－
3	4.50	DS	45.72	1.29	1.88	1.06	2.66	39.15	28.30	10.85	－	6.00	24.00	70.00	0.33	－
4	6.00	DS	36.79	1.38	1.89	0.93	2.67	40.13	26.33	13.80	－	5.00	24.00	71.00	0.36	－
5	7.50	DS	36.21	1.39	1.90	0.91	2.66	37.88	27.21	10.67	－	6.00	26.00	68.00	0.39	－
6	9.00	DS	33.49	1.43	1.91	1.94	2.67	－	－	－	－	12.00	23.00	65.00	0.43	－

SYYVNJ甘				

SHEAR TEST GRAPH

BH NO :
DEPTH: 2.0 m
$\mathrm{c}=0.21 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 7
DEPTH: 3.0 m
$\mathrm{C}=0.00 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=33.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 8
DEPTH: 3.0 m
$C=0.28 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 8
$\mathrm{C}=0.33 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 4.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 8
DEPTH: 6.0 m
$C=0.36 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 8
$\mathrm{C}=0.39 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 7.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

$\mathrm{BH} \mathrm{NO} \quad 8$

$$
\mathrm{c}=0.43 \mathrm{kgf} / \mathrm{cm}^{2}
$$

$$
\Phi=0.0^{\circ}
$$

$$
\text { Part - } 6
$$

AT WATER TREATMENT PLANT LOCATION (SUNSALI VILLAGE)

BORE HOLE LOG DATA SHEET

Bore Hole No.: 11

No. of SP Test		11	Samples	Nos.	Commencement Date :
No. of Vane(V) Test	-	Undisturbed (UDS)	3	Completion Date :	$4 / 9 / 2012$
Length of Casing	3.0	Penetrometer (SPT)	11	Bore Hole Diameter :	150 mm
SPT done By	M	Disturbed	11	Level of Ground:	RL-49.735 m
Method of Boring	Drilling	Water Sample	1	Water Struct at :	

BORE HOLE LOG DATA SHEET
Bore Hole No.:
12

No. of SP Test	11	Samples	Nos.	Commencement Date :	$5 / 9 / 2012$
	2	Undisturbed (UDS)	3	Completion Date :	$12 / 9 / 2012$
No. of Vane(V) Test	3.0	Penetrometer (SPT)	11	Bore Hole Diameter :	150 mm
Length of Casing	M	Disturbed	11	Level of Ground :	RL-49.500 m
SPT done By	Drilling	Water Sample	1	Water Struct at :	
Method of Boring			Standing Water Level :	RL-49.500 m	

BORE HOLE LOG DATA SHEET
Bore Hole No.:

No. of SP Test	11	Samples	Nos.	Commencement Date :	$5 / 9 / 2012$
No. of Vane(V) Test	2	Undisturbed (UDS)	3	Completion Date :	$12 / 9 / 2012$
Length of Casing	3.0	Penetrometer (SPT)	11	Bore Hole Diameter :	150 mm
SPT done By	M	Disturbed	11	Level of Ground :	RL-49.500 m
Method of Boring	Drilling	Water Sample	1	Water Struct at :	
			Standing Water Level :	RL-49.500 m	

BORE HOLE LOG DATA SHEET
Bore Hole No.:

No. of SP Test	10	Samples	Nos.	Commencement Date :	$18 / 9 / 2012$
No. of Vane(V) Test	2	Undisturbed (UDS)	3	Completion Date :	$19 / 9 / 2012$
Length of Casing	3.0	Penetrometer (SPT)	10	Bore Hole Diameter :	150 mm
SPT done By	M	Disturbed	10	Level of Ground :	RL-48.468 m
Method of Boring	Drilling	Water Sample	1	Water Struct at :	

BORE HOLE LOG DATA SHEET
Bore Hole No.:

No. of SP Test	10	Samples	Nos.	Commencement Date :	$18 / 9 / 2012$
No. of Vane(V) Test	2	Undisturbed (UDS)	3	Completion Date :	$19 / 9 / 2012$
Length of Casing	3.0	Penetrometer (SPT)	10	Bore Hole Diameter :	150 mm
SPT done By	M	Disturbed	10	Level of Ground:	RL-48.468 m
Method of Boring	Drilling	Water Sample	1	Water Struct at :	
				Standing Water Level :	RL-51.468 m

BORE HOLE LOG DATA SHEET

Bore Hole No.:

No. of SP Test
No. of Vane(V) Test Length of Casing SPT done By
Method of Boring

10	Samples	Nos.	Commencement Date :	$21 / 9 / 2012$
1	Undisturbed (UDS)	3	Completion Date :	$21 / 9 / 2012$
3.0	Penetrometer (SPT)	10	Bore Hole Diameter :	150 mm
M	Disturbed	10	Level of Ground :	RL-48.694 m
Drilling	Water Sample	1	Water Struct at :	
			Standing Water Level :	RL-51.694 m

BORE HOLE LOG DATA SHEET
Bore Hole No.:
14

No. of SP Test	10	Samples	Nos.	Commencement Date :	$21 / 9 / 2012$
	1	Undisturbed (UDS)	3	Completion Date :	$21 / 9 / 2012$
No. of Vane(V) Test	3.0	Penetrometer (SPT)	10	Bore Hole Diameter :	150 mm
Length of Casing	M	Disturbed	10	Level of Ground :	RL-48.694 m
SPT done By	Drilling	Water Sample	1	Water Struct at :	
Method of Boring			Standing Water Level :	RL-51.694 m	

BORE HOLE LOG DATA SHEET

Bore Hole No.:

No. of SP Test	12	Samples	Nos.	Commencement Date :	$23 / 9 / 2012$
No. of Vane(V) Test	2	Undisturbed (UDS)	3	Completion Date :	$24 / 9 / 2012$
Length of Casing	3.0	Penetrometer (SPT)	12	Bore Hole Diameter :	150 mm
SPT done By	M	Disturbed	12	Level of Ground :	RL-48.546 m
Method of Boring	Drilling	Water Sample	1	Water Struct at :	
				Standing Water Level :	RL-51.546 m

BORE HOLE LOG DATA SHEET
Bore Hole No.:

No. of SP Test	12	Samples	Nos.	Commencement Date :	$23 / 9 / 2012$
No. of Vane(V) Test	2	Undisturbed (UDS)	3	Completion Date :	$24 / 9 / 2012$
Length of Casing	3.0	Penetrometer (SPT)	12	Bore Hole Diameter :	150 mm
SPT done By	M	Disturbed	12	Level of Ground :	RL-48.546 m
Method of Boring	Drilling	Water Sample	1	Water Struct at :	

CHEMICAL ANALYSIS OF SOIL:

Sample No.	P^{H} Value	Chiorides (as CI)	Sulphate (as SO4)	Other organic Content	Reaction to acid
1	6.7	62	55	23	Nil
2	6.7	61	59	19	Nil
3	6.7	64	61	17	Nil

CHEMICAL ANALYSIS OF SUB-SOIL WATER:

Sample No.	P^{H} Value	Chlorides (as CI)	Sulphate (as SO4)	Other organic Content
1	6.6	62	56	29
2	6.6	63	58	25
3	6.7	65	61	28

The above results show that the strata is quite safe for Concrete \mathcal{E} Reinforcement for the site.

INTERPRETATION OF TEST RESULTS:

The exact choice of type of foundation shall depend on the relative economics and practical considerations.

The safe load carrying capacity of a bored cast in-situ concrete pile in cohesive soil layer shall be governed by IS: 2911 (Part I/Sec2) - 1979 code of practice for determination of allowable pile load capacitye of pile foundation for structural safety of Structures.

STANDARD PENETRATION TEST

The field S.P.T is corrected for both Over burden pressure and for dilatancy (As per IS:2131-1982)

B. H No.	Depth (m)	Over burden Pressure $\mathrm{kg} / \mathrm{cm}^{2}$	No. of Blows Recorded at field for Penetration			N -value	Corrected N value
			15 cm	30 cm	45 cm		
11	1.5	0.150	1	1	1	2	3
	3.0	0.300	1	1	1	2	3
	4.5	0.450	1	1	2	3	4
	6.0	0.600	1	1	2	3	3
	7.5	0.750	1	1	2	3	3
	9.0	0.900	1	2	2	4	4
	10.5	1.050	1	1	1	2	2
	12.0	1.200	1	2	2	4	4
	13.5	1.350	1	2	3	5	5
	15.0	1.500	1	4	4	8	7
	16.5	1.650	Refusal			100	50
12	1.5	0.150	1	1	1	2	3
	3.0	0.300	1	1	1	2	3
	4.5	0.450	1	1	1	2	2
	6.0	0.600	1	1	2	3	3
	7.5	0.750	1	2	2	4	4
	9.0	0.900	1	1	2	3	3
	10.5	1.050	8	11	14	25	20
	12.0	1.200	7	9	12	21	17
	13.5	1.350	5	8	12	20	17
	15.0	1.500	4	6	6	12	11
	16.5	1.650	4	6	8	14	12
	18.0	1.800	5	5	6	11	9
	19.5	1.950	11	20	22	42	24
	21.0	2.100	12	15	23	38	22
	22.5	2.250	12	31	38	69	33
	24.0	2.400	Refusal			100	44

STANDARD PENETRATION TEST

The field S.P.T is corrected for both Over burden pressure and for dilatancy (As per IS:2131-1982)

B. H No.	Depth (m)	Over burden Pressure $\mathrm{kg} / \mathrm{cm}^{2}$	No. of Blows Recorded at field for Penetration			N -value	Corrected N value
			15 cm	30 cm	45 cm		
13	1.5	0.150	-	-	-	-	-
	3.0	0.300	-	-	-	-	-
	4.5	0.450	1	1	1	2	2
	6.0	0.600	1	2	2	4	5
	7.5	0.750	1	1	2	3	3
	9.0	0.900	1	1	1	2	2
	10.5	1.050	1	2	2	4	4
	12.0	1.200	1	2	3	5	5
	13.5	1.350	7	13	16	29	21
	15.0	1.500	16	8	9	17	15
	16.5	1.650	17	20	24	99	50
	18.0	1.800	Refusal			100	49
14	1.5	0.150	-	-	-	-	-
	3.0	0.300	-	-	-	-	-
	4.5	0.450	-	-	-	-	-
	6.0	0.600	1	1	2	3	3
	7.5	0.750	1	2	3	5	5
	9.0	0.900	1	2	2	4	4
	10.5	1.050	2	3	4	7	7
	12.0	1.200	3	4	4	8	8
	13.5	1.350	3	6	8	14	13
	15.0	1.500	7	8	11	19	16
	16.5	1.650	14	17	22	39	24
	18.0	1.800	16	20	23	43	25
	19.5	1.950	Refusal			100	47

STANDARD PENETRATION TEST

The field S.P.T is corrected for both Over burden pressure and for dilatancy (As per IS:2131-1982)

B. H No.	Depth (m)	Over burden Pressure $\mathrm{kg} / \mathrm{cm}^{2}$	No. of Blows Recorded at field for Penetration			N -value	Corrected N value
			15 cm	30 cm	45 cm		
15	1.5	0.150	-	-	1	1	2
	3.0	0.300	1	1	1	2	3
	4.5	0.450	1	1	1	2	2
	6.0	0.600	1	1	2	3	3
	7.5	0.750	1	2	2	4	4
	9.0	0.900	1	2	2	4	4
	10.5	1.050	2	3	3	6	6
	12.0	1.200	2	3	4	7	7
	13.5	1.350	3	5	6	11	10
	15.0	1.500	4	7	7	14	12
	16.5	1.650	10	13	15	99	50
	18.0	1.800	14	19	20	100	49
	19.5	1.950	Refusal			100	47

PILE LOAD CAPACITY

The safe load carrying capacity of a bored cast in-situ concrete pile passing through clayey soil layer and resting on granular soil has been worked out by using the following formular as per IS: 2911 (Part I/Sec 2) -1979
$Q_{\mathrm{s}} \quad=\left(\left(\operatorname{Ap}\left(0.5 \mathrm{D} \gamma \mathrm{N}_{\mathrm{y}}+\mathrm{P}_{\mathrm{D}} \mathrm{N}_{\mathrm{q}}\right)+\alpha \mathrm{C}^{\prime} \mathrm{As}\right) / \mathrm{F}\right) / 1000 \mathrm{t}$
Where $A_{p}=$ Cross sectional area of pile stem at toe level in cm^{2}
D $=$ Stem diameter in cm
$\gamma=$ Effective unit weight of soil at pile toe in $\mathrm{kgf} / \mathrm{cm} 3$
$P_{D}=$ Effective overburden pressure at pile toe in $\mathrm{kgf} / \mathrm{cm}^{2}$
$\mathrm{N} \gamma \& \mathrm{~N}_{\mathrm{q}}=$ Bearing capacity factors depending upon the angle of internal friction f at toe
$\alpha=$ Reduction factor
$\mathrm{C}^{\prime}=$ Average cohesion of the soil along the pile stem in $\mathrm{kgf} / \mathrm{cm}^{2}$
$\mathrm{A}_{\mathrm{s}}=$ Surface area of the stem in cm^{2}
$\mathrm{F}=$ Factor of safety

PILE LOAD CAPACITY CALCULATION

For Borehole No. 15

Length of pile $=1950 \mathrm{~cm}$
$\mathrm{D}=40 \mathrm{~cm}$
Effective pile length for overburden pressure $=20 \times 40=800 \mathrm{~cm}$

```
\gamma}=0.001 kgf/\mp@subsup{\textrm{cm}}{}{2
P
\phi = 33 }\mp@subsup{}{}{\circ
N
Nq}=34.
\alpha=0.5
```

$C^{\prime}=0.310 \mathrm{kgf} / \mathrm{cm}^{2}$
$A p=(3.1415 / 4) \times 40^{\wedge} 2=1,256.64 \mathrm{~cm}^{2}$
Effective shaft length $=1800 \mathrm{~cm}$
As $=226,194.67 \mathrm{~cm}^{2}$
$\mathrm{F}=2.5$
Qs $=((1,256.64 \times(0.5 \times 40 \times 0.001 \times 35.19+0.8 \times 34)+0.5 \times 0.31 \times 226,194.67) / 2.5) / 1000$
$=28.05$ ton

RECOMMENDATION:

From field and laboratory investigations, it is found that the hard strata is encountered at various depth in various bore hole locations and it is vaies from $6.0 \mathrm{~m}-19.50 \mathrm{~m}$ which is consist od sand.From the structural point of view it is recommended to addopt pile foundation which is tabulated below as per requirement of pile capacity.

Length of Pile $=19.50 \mathrm{~m}$ from cutoff level)

Type of Pile	Diameter Of Pile (cm)	Pile Load Capacity (ton)	Recommended Pile Load Capacity (ton)	
	40.00	28.05	60 cm dia.	60 cm dia.
Cast-in-situ R.C.C Bored Concrete Pile	60.00	68.37	28.00	68.00

However, the theoretical load carrying capacity of pile is to be verified by conducting load test on pile.

A. CONSTANT HEAD

OBJECTIVE

To determine the coefficient of permeability of a soil using constant head method.

Need and Scope

The knowledge of this property is much useful in solving problems involving yield of water bearing strata, seepage through earthen dams, stability of earthen dams, and embankments of canal bank affected by seepage, settlement etc.

Planning and organization:

1. Preparation of the soil sample for the test
2.Finding the discharge through the specimen under a particular head of water.

Definition of coefficient of permeability

The rate of flow under laminar flow conditions through a unit cross sectional are of porous medium under unit hydraulic gradient is defined as coefficient of permeability.

B.H No.	Depth (m)	Co-efficient of Permeability $(\mathrm{cm} / \mathrm{sec})$
1	3.00	5.55×10^{-4}
2	3.00	5.37×10^{-4}

RESULTS OF LABORATORY TEST

5	－	1	，	$\stackrel{\sim}{\sim}$	，	，	1	＇	1	，	1	in
$\frac{\pi}{n}$	$0 \frac{\overbrace{0}^{E}}{E}$		$\frac{9}{0}$	1	へু	ત̀	તे	$\bar{?}$	Ñ	?	ल ${ }^{\text {on }}$	1
	KEl）	$\underset{\sim}{8}$	$\begin{aligned} & 8 \\ & \text { ì } \end{aligned}$	8	$\begin{gathered} 8 \\ \infty \\ \infty \end{gathered}$	$\frac{8}{i}$	$\begin{aligned} & 8 . \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 8 . \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { in } \end{aligned}$	$\underset{\sim}{8}$	8
	H！S	$\begin{aligned} & 8 \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 8 . \\ & \underset{N}{n} \end{aligned}$	8	$\stackrel{8}{\mathrm{~N}}$	$\begin{aligned} & 8 \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & 8 \\ & \text { Ni } \end{aligned}$	$\stackrel{8}{\mathrm{~N}}$	$\begin{aligned} & \text { o. } \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { 8. } \\ & \underset{\sim}{\dot{N}} \end{aligned}$	$\begin{aligned} & 8 \\ & \text { ì } \end{aligned}$	$\stackrel{8}{\mathrm{i}}$
	purs	$\begin{aligned} & 8 \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 8 \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & \dot{\gamma} \end{aligned}$	8	$\stackrel{\circ}{\circ}$	$\begin{aligned} & 8 \\ & \dot{+} \end{aligned}$	$\underset{\sim}{8}$	8	$\stackrel{8}{\stackrel{\rightharpoonup}{\circ}}$
	ןле．л	，	1	，	1	＇	1	，	1	＇	＇	1
$\frac{e_{0}^{0}}{5}$	IGNI XLIIOILSV＇d	बे	$\begin{aligned} & \text { N } \\ & \text { U } \end{aligned}$	1	®	1	1	，	＇	1	1	，
	DILSVTd	$\begin{aligned} & \text { ल } \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{gathered} \infty \\ \stackrel{\infty}{\mathrm{N}} \end{gathered}$	1	$\begin{aligned} & \text { oे } \\ & \text { సे } \end{aligned}$	1	1	1	＇	，	＇	，
	のIกO゙T	$\underset{\sim}{\infty}$	$\frac{0}{\mathrm{~m}}$	1	¢	1	＇	1	＇	＇	，	1
	ALIAVED＇dS	$\stackrel{\hat{\sigma}}{\stackrel{\rightharpoonup}{i}}$	$\begin{aligned} & \stackrel{\circ}{i} \\ & i \end{aligned}$	$\begin{aligned} & \hat{N} \\ & i \end{aligned}$	$\stackrel{\bullet}{\circ}$	$$	$\begin{aligned} & \hat{6} \\ & i \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \hat{a} \\ & \text { in } \end{aligned}$	$\stackrel{\rightharpoonup}{6}$	$\stackrel{\rightharpoonup}{6}$	$\begin{aligned} & \mathrm{e} \\ & \mathrm{i} \end{aligned}$
	OILVY GIOA	$\begin{aligned} & \infty \\ & \infty \\ & 0 \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{n}{\stackrel{\sim}{0}}$	$\underset{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\circ}{\infty}$	$\%$	$\stackrel{\infty}{\infty}$	$\underset{\infty}{\infty}$	$\stackrel{\varrho}{\circ}$	$\stackrel{\sim}{0}$
$\frac{\pi}{n}$	（53／u\％）LGM	$\stackrel{\circ}{-}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{-}$	$\stackrel{\sim}{-}$	$\stackrel{\infty}{\infty}$	$\stackrel{\bigcirc}{-}$	$\stackrel{\infty}{\infty}$	$\stackrel{\otimes}{\circ}$	$\bar{\square}$	§	$\stackrel{2}{2}$
		$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\sim}{n}$	$\stackrel{\square}{-}$	$\stackrel{\square}{-}$	$\stackrel{\infty}{\square}$	$\underset{\text {－}}{\text {－}}$	$\stackrel{\square}{-}$	$\stackrel{\bigcirc}{\square}$	$\stackrel{n}{n}$	$\stackrel{\sim}{\bullet}$
（\％）LNGLNOD 甘GLVM		$\frac{\mathrm{N}}{\text { ¢ }}$	$\frac{o}{i}$	$\stackrel{\underset{N}{N}}{\underset{\sim}{+}}$	$\underset{\text { N}}{\underset{\sim}{2}}$	$\stackrel{\text { N}}{\substack{2}}$	$\stackrel{\underset{\sim}{\infty}}{\underset{\sim}{\infty}}$	$\frac{N}{m}$	$\frac{\mathrm{o}}{\text { j }}$	$\xrightarrow{\text { c }}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	N ∞
NOILdİOS3G AGİg		\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim
SyGlaw Ni HLdag		$\stackrel{\text { ® }}{\sim}$	$\underset{\sim}{8}$	$\stackrel{\circ}{n}$	$\begin{aligned} & 8 . \\ & 0 \end{aligned}$	$\stackrel{\sim}{n}$	$\stackrel{8}{\circ}$	$\begin{aligned} & i \\ & \stackrel{n}{0} \end{aligned}$	$\begin{aligned} & 8 \\ & \text { B } \end{aligned}$	$\begin{aligned} & \stackrel{n}{n} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & 8 \\ & \vdots \\ & \vdots \end{aligned}$	® \sim \sim
	＇On G7dwvs	－	\sim	m	\checkmark	in	\bigcirc	\checkmark	∞	a	응	二
＇ON 370H 3yOg		＝										

RESULTS OF LABORATORY TEST

5	$-\stackrel{\text { む }}{0}$	，	，	＇	，	＇	，	＇	，	，	，	，	1	－	$\stackrel{\stackrel{\sim}{\mathrm{N}}}{ }$	－	in
$\frac{\pi}{n}$	$0{ }_{\frac{\pi}{E}}^{E}$		$\frac{\infty}{0}$	$\frac{9}{0}$	$\underset{\sim}{\underset{o}{2}}$	$$	$\begin{aligned} & \infty \\ & \underset{0}{1} \end{aligned}$	$\underset{0}{\underset{\circ}{*}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	\hat{n}	$\underset{0}{\ddagger}$	$\stackrel{\Im}{0}$	$\begin{aligned} & \text { m } \\ & 0 \end{aligned}$	，	＇	，	＇
	（8）	$\underset{\sim}{8}$	$\begin{aligned} & 8 \\ & \text { i } \end{aligned}$	$\begin{aligned} & 8 \\ & \text { gi } \end{aligned}$	$\frac{8}{\pi}$	$\begin{aligned} & 8 \\ & \text { i } \end{aligned}$	$\begin{aligned} & 8 \\ & \text { i } \end{aligned}$	$\begin{aligned} & 8 \\ & i \end{aligned}$	8.	$\frac{8}{i}$	$\begin{aligned} & 8 \\ & \text { i } \end{aligned}$	$\underset{\sim}{\text { ®i }}$	8	8	8	8	8
	$1!5$	$\begin{aligned} & 8 \\ & \dot{N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{8}{\dot{~}} \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & 8 \\ & \text { N. } \end{aligned}$	$\begin{aligned} & 8 \\ & \dot{N} \\ & \text { N } \end{aligned}$	$$	$\begin{aligned} & 8 \\ & \text { N } \end{aligned}$	$\begin{aligned} & 8 . \\ & \dot{N} \end{aligned}$	$\begin{aligned} & 8 \\ & \text { Ni } \end{aligned}$	$\begin{aligned} & 8 \\ & \text { N } \end{aligned}$	8	8	$\begin{aligned} & 8 \\ & \text { i } \end{aligned}$	8	8
	pues	$\begin{aligned} & 8 \\ & i \end{aligned}$	$\stackrel{8}{\circ}$	$\stackrel{8}{\dot{\sim}}$	$\stackrel{8}{\dot{+}}$	8	$\stackrel{8}{\mathrm{~m}}$	$\stackrel{8}{\mathrm{O}}$	$\stackrel{8}{\circ}$	$\begin{aligned} & 8 . \\ & 0 \end{aligned}$	\%	$\begin{aligned} & 8 \\ & i \end{aligned}$	$\begin{gathered} 8 \\ \infty \\ \infty \end{gathered}$	$\stackrel{8}{\infty}$	$\stackrel{8}{\mathrm{O}}$	$\begin{aligned} & \text { O. } \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { o, } \\ & \infty \\ & \infty \end{aligned}$
	ןлел9	，	1	＇	＇	1	，	，	1	＇	＇	＇	，	1	1	＇	，
コ	IGNI ALIOILSVTd	$\overline{\overline{0}}$	$\stackrel{+}{\sim}$	$\begin{aligned} & \text { ̇ } \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \dot{+} \\ & \text { I } \end{aligned}$	，	＇	，	，	1	＇	，	，	1	，	＇	1
	OILSVTd	$\overline{\mathrm{N}}$	$\stackrel{\infty}{\stackrel{\infty}{\infty}} \stackrel{+}{\sim}$	$\begin{aligned} & \text { Ñ } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \infty \\ & \text { n } \\ & \text { n } \end{aligned}$	，	，	＇	，	，	1	＇	，	，	＇	，	＇
	の1กอัา	$$	$\frac{N}{\infty}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \infty \\ & \infty \end{aligned}$	N゙	，	＇	＇	，	，	＇	＇	＇	＇	＇	，	1
	ALIAVYD＇dS	$\begin{aligned} & \hat{6} \\ & i \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { i } \end{aligned}$	$\stackrel{\hat{V}}{\mathrm{i}}$	$\begin{aligned} & \hat{6} \\ & i \end{aligned}$	$\begin{aligned} & \bullet \\ & \stackrel{0}{i} \end{aligned}$	$\begin{aligned} & \hat{6} \\ & i \end{aligned}$	$\stackrel{i}{6}$	$\begin{aligned} & \hat{b} \\ & i \end{aligned}$	$\begin{aligned} & \hat{0} \\ & i \end{aligned}$	$\begin{aligned} & \hat{b} \\ & i \end{aligned}$	$\begin{aligned} & \hat{\sigma} \\ & i \end{aligned}$	$\begin{gathered} \hat{b} \\ \underset{i}{\prime} \end{gathered}$	$\begin{aligned} & \hat{\sigma} \\ & \stackrel{i}{i} \end{aligned}$	$\begin{aligned} & \hat{b} \\ & \text { i } \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & i \end{aligned}$	$\stackrel{\infty}{\circ}$
	OILVY GIOA	$\stackrel{\imath}{\sigma}$	o	$\stackrel{\infty}{\infty}$	亿o	$\underset{\infty}{\infty}$	$\stackrel{\overbrace{}}{\vdots}$	$\underset{i}{\star}$	$\underset{O}{N}$	$\stackrel{\infty}{\stackrel{\infty}{\circ}}$	$\stackrel{n}{\cong}$	$\underset{\sim}{*}$	$\stackrel{n}{n}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{O} \end{aligned}$	$\stackrel{n}{0}$	$\begin{aligned} & \text { n} \\ & 0 \end{aligned}$	$\stackrel{\text { ¢ }}{\substack{0}}$
$\frac{\lambda}{\omega}$	（50／u8）L3M	$\stackrel{\circ}{-}$	$\stackrel{\infty}{\infty}$	$\stackrel{\text { ® }}{-}$	$\stackrel{\sim}{\infty}$	$\underset{\sim}{\infty}$	$\stackrel{\circ}{-}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{-}$	了	§	$\underset{\sim}{n}$	$\hat{\varrho}$	ลे	$\stackrel{\overline{\mathrm{i}}}{ }$	$\stackrel{\text { ®⿵冂}}{\mathrm{i}}$	$\stackrel{\sim}{6}$
		$\stackrel{n}{?}$	テ	$\stackrel{\text { O }}{\sim}$	$\stackrel{\text { n }}{\sim}$	ণ	奇	$\begin{aligned} & \bullet \\ & \stackrel{n}{?} \end{aligned}$	$\stackrel{\sim}{\square}$	$\stackrel{\text { ？}}{\sim}$	n	$\begin{aligned} & \bullet \\ & n \end{aligned}$	$\stackrel{?}{~}$	تु	$\stackrel{ \pm}{\underset{-}{-}}$	$\stackrel{\infty}{\stackrel{ }{\sim}}$	$\stackrel{\infty}{\infty}$
（\％）LNGLNOכ YGLVM		$\begin{aligned} & \underset{\sim}{n} \\ & \underset{m}{2} \end{aligned}$		N゙	$$	$\stackrel{\infty}{\stackrel{\infty}{\sim}}$	$\frac{2}{\stackrel{\rightharpoonup}{N}}$	$\underset{\sim}{i}$	$\frac{\tilde{\sim}}{\sim}$	$\stackrel{N}{\text { N}}$	$\underset{\sim}{n}$	$\stackrel{\infty}{\stackrel{\sim}{\sim}}$	$\begin{aligned} & \approx \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \pm \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\frac{2}{i}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \end{aligned}$	$\stackrel{\text { N }}{\text { N }}$
NOILdIEOSAG H3I\％G		\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	$\underset{\sim}{\infty}$	\sim	\sim	\sim	\sim	\sim	\sim	\sim
StGL3W NI HLdGa		$\stackrel{?}{n}$	$\stackrel{8}{\mathrm{o}}$	$\begin{aligned} & \text { in } \\ & \underset{\sim}{2} \end{aligned}$	8.	$\stackrel{i}{n}$	O.	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { i } \end{aligned}$	$\begin{aligned} & o \\ & n \\ & n \end{aligned}$	8 i	$\begin{aligned} & 0 \\ & \hat{0} \\ & \hline \end{aligned}$	$\begin{aligned} & 8 . \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \end{aligned}$	$\frac{8}{\mathrm{~N}}$	$\begin{aligned} & \text { O} \\ & \text { Ni } \end{aligned}$	8 $\stackrel{+}{\dot{N}}$
	＇ON GTdWVS	－	\sim	m	\checkmark	in	\bigcirc	\checkmark	∞	a	\bigcirc	$=$	さ	\cdots	\pm	\sim	\bigcirc
＇On $370{ }^{\text {O }}$		$\mathrm{\sim}$															

RESULTS OF LABORATORY TEST

5	$\theta \stackrel{:}{0}$	1	，	，	，	，	＇	1	1	1	1	$\stackrel{\circ}{\text { ® }}$	ले
$\frac{e_{n}^{2}}{\frac{1}{n}}$			$\frac{\infty}{0}$	ָ̇	～ٌ	กั	$\stackrel{\infty}{\sim}$	लొ?	N	$\stackrel{0}{0}$	\cdots	，	，
GRAIN SIZE ANALYSIS (\%)	SElO	$\begin{aligned} & 8 \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \stackrel{8}{\dot{N}} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & \text { gi } \end{aligned}$	$\stackrel{8}{\mathrm{O}}$	$\begin{aligned} & 8 \\ & 0 \\ & 8 \end{aligned}$	8.	$\frac{8}{\sim}$	$\begin{aligned} & 8 \\ & \text { i } \end{aligned}$	8	8	8
	H！S	－	$\begin{aligned} & 8 . \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \text { N } \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{\rightharpoonup}{0} \\ & \text { ì } \end{aligned}$	$\begin{aligned} & 8 \\ & \text { N } \end{aligned}$	$\stackrel{8}{\underset{\sim}{⿺}}$	$\begin{aligned} & 8 . \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 . \\ & \text { Nे } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	8	8	8
	pues	$\stackrel{8}{\circ}$	$\underset{\sim}{\circ}$	$\begin{aligned} & 8 \\ & 0 . \end{aligned}$	$\begin{aligned} & 8 \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \end{aligned}$	$8 .$	$\stackrel{8}{i}$	$\stackrel{8}{0}$	$\stackrel{8}{\circ}$	$\stackrel{8}{\infty}$	$\begin{aligned} & \text { o. } \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & \text { O. } \\ & \dot{\infty} \end{aligned}$
	pas．ig	，	，	＇	＇	＇	，	＇	＇	＇	＇	1	，
$\frac{\stackrel{e}{e}}{5}$	IGNI ALIDILSV＇d	$\stackrel{\square}{\square}$	$\stackrel{m}{\square}$	$\overline{\text { 二 }}$	$\stackrel{\infty}{\text { N }}$	1	1	＇	1	，	＇	1	＇
	OILSV＇Td	$\begin{aligned} & \text { Ǹ } \\ & \text { Nu } \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \stackrel{N}{2} \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \text { ñ } \\ & \text { in } \end{aligned}$	＇	1	1	，	，	1	＇	＇
	の1กర゙т	$\stackrel{\varrho}{\infty} \underset{\sim}{\infty}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { ¢ } \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \dot{j} \end{aligned}$	1	＇	，	＇	＇	＇	＇	1
	ALIAVYD＇dS	$\begin{aligned} & \hat{b} \\ & i \end{aligned}$	$\begin{aligned} & \overbrace{0} \\ & \text { i } \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{o}}$	$\begin{aligned} & \bullet \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$	$\begin{aligned} & \stackrel{\bullet}{6} \\ & i \end{aligned}$	$\stackrel{i}{6}$	$\begin{aligned} & \infty \\ & \underset{i}{\infty} \end{aligned}$	$\begin{aligned} & \hat{o} \\ & i \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{i} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { in } \end{aligned}$	$\stackrel{\rightharpoonup}{6}$	$\stackrel{\infty}{\circ}$
	OILVY GIOA	$\stackrel{\infty}{-}$	8	\bigcirc	$\stackrel{8}{8}$	$\stackrel{\sim}{\square}$	\bigcirc	\hat{o}	$\stackrel{\circ}{\circ}$	$\hat{0}$	$\begin{aligned} & \text { Ņ } \\ & \text { O. } \end{aligned}$	$\stackrel{a}{n}$	$\stackrel{\sim}{\sim}$
$\frac{\lambda}{\bar{n}}$	（כว／แธ）L3M	$\stackrel{\circ}{-}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	응	$\stackrel{\infty}{\infty}$	$\stackrel{\bigcirc}{-}$	¢	$\stackrel{\sim}{2}$	人ิ	$\stackrel{\text { g }}{ }$
	（50／u8）\8¢	$\stackrel{\sim}{\text { ¢ }}$	$\stackrel{\text { ？}}{\text { ？}}$	$\stackrel{\text { m }}{\text { ？}}$	へ̇	$\stackrel{\sim}{\sim}$	？	$\stackrel{?}{?}$	$\stackrel{\text { }}{\sim}$	$\underline{\square}$	$\mathfrak{\sim}$	$\stackrel{\infty}{0}$	$\stackrel{N}{\text { N}}$
（\％）LNGLNOЗ YGLVM		$\begin{aligned} & \stackrel{\omega}{\mathrm{H}} \end{aligned}$	$\stackrel{n}{\circ}$	$\frac{m}{\text { ¢ }}$	$\stackrel{\underset{\sim}{\mathrm{N}}}{\underset{\sim}{+}}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sigma}{\infty} \end{aligned}$	$\begin{aligned} & \bar{\infty} \\ & \underset{Y}{\prime} \end{aligned}$		$\frac{9}{m}$	$\begin{aligned} & \overline{0} \\ & 0 . \end{aligned}$	$\stackrel{\text { Nे}}{\infty}$	$\stackrel{\text { N}}{\underset{N}{N}}$	J $\stackrel{i}{2}$
NOILdİOSGd stivg		\sim	\％	\sim	\sim	\sim	๓	\sim	\sim	\sim	\sim	\sim	∞
StGlaw NI HLdGa		$\stackrel{\square}{\square}$	$\stackrel{8}{\mathrm{e}}$	$\stackrel{\circ}{\sim}$	8	$\begin{aligned} & \stackrel{n}{n} \end{aligned}$	O.	$\begin{aligned} & \text { in } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \text { I } \end{aligned}$	n \sim	$\begin{aligned} & 8 \\ & \dot{n} \end{aligned}$	－	\bigcirc
	＇ON 37dWVS	－	\sim	m	∇	in	\bigcirc	\bigcirc	∞	a	응	二	\sim
＇ON 37OH ד\％Og		m											

RESULTS OF LABORATORY TEST

\bar{m}	$\theta \stackrel{\text { E. }}{0}$	，	，	－	，	，	，	，	，	＇	＇	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{0}$	in
$\frac{2}{2}$	$0 \frac{\stackrel{N}{E}}{\frac{N}{D}}$	，	$\stackrel{\infty}{\circ}$	$\frac{J}{0}$	$\frac{\nwarrow}{0}$	たิ	त̈	ô	તે	$\stackrel{\infty}{\circ}$	$\stackrel{i}{0}$	，	，	，
	Selo	$\underset{\text { ì }}{\stackrel{8}{2}}$	$\underset{\underset{\sim}{8}}{\stackrel{8}{+}}$	$\stackrel{\otimes}{\circ}$	$\begin{aligned} & 8 . \\ & 0 . \end{aligned}$	$\underset{\text { i}}{\stackrel{8}{i}}$	$\stackrel{8}{\underset{\sim}{N}}$	$\stackrel{8}{\mathrm{i}}$	$\stackrel{8}{\mathrm{O}}$	$\stackrel{8}{\infty}$	$\stackrel{8}{\circ}$	$\stackrel{8}{\mathrm{i}}$	$\stackrel{8}{+}$	$\stackrel{8}{\text {－}}$
	H！S	$\begin{aligned} & \stackrel{8}{\mathrm{n}} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{8}{\dot{N}} \\ & \text { - } \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & 8 \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { di } \end{aligned}$	$\begin{aligned} & 8 \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{8}{\mathrm{i}} \end{aligned}$	$\begin{aligned} & \stackrel{8}{+} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{8}{\dot{\sim}} \\ & \hline \end{aligned}$	$\stackrel{\circ}{i}$	$\stackrel{8}{\mathrm{i}}$	$\stackrel{8}{-}$
	pues	$\stackrel{8}{\circ}$	$\stackrel{8}{i}$	$\begin{aligned} & 8 \\ & i \end{aligned}$	$\stackrel{8}{\dot{子}}$	$\stackrel{8}{6}$	$\stackrel{8}{\mathrm{O}}$	$\stackrel{8}{6}$	$\begin{aligned} & 8 \\ & i \\ & i \end{aligned}$	8	$\begin{aligned} & 8 \\ & i \end{aligned}$	$\begin{aligned} & \stackrel{8}{6} \\ & \dot{\alpha} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{2}{2} \end{aligned}$	$\begin{aligned} & \stackrel{8}{\mathrm{a}} \\ & \stackrel{1}{2} \end{aligned}$
	равел	，	，	，	＇	＇	，	＇	，	，	，	，	，	＇
$\frac{0}{\frac{0}{2}}$	IGNI AlIDILSV7d	O.	$\stackrel{n}{n}$	$\begin{aligned} & \underset{\sim}{\alpha} \\ & \text { I } \end{aligned}$	$\begin{aligned} & n \\ & = \end{aligned}$	，	，	，	，	，	，	＇	，	＇
	IILSVTd	$\begin{aligned} & \text { n } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\circ} \\ & \underset{\sim}{n} \end{aligned}$	N్లి	$\begin{aligned} & \underset{\sim}{f} \\ & \stackrel{\sim}{d} \end{aligned}$	，	，	，	，	，	，	＇	＇	＇
	のıกठı	$\stackrel{\overline{\mathrm{N}}}{\mathrm{~m}}$	$\begin{aligned} & i \\ & \infty \\ & \infty \\ & m \end{aligned}$	$\begin{aligned} & \text { N̈ } \\ & \text { ® } \end{aligned}$	$\stackrel{\infty}{\underset{\sim}{\sim}}$	，	，	，	＇	，	，	，	，	，
ALIAVYO＇dS		$\stackrel{\widehat{O}_{i}}{ }$	$\begin{aligned} & \text { B } \\ & \text { Ni } \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \text { Ni } \end{aligned}$	B	$\begin{aligned} & \mathrm{i} \\ & \mathrm{i} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{i}}$	$\begin{aligned} & \mathrm{a} \\ & \mathrm{i} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & i \end{aligned}$	$\begin{aligned} & \hat{6} \\ & i \end{aligned}$	$\stackrel{\otimes}{\stackrel{\circ}{\mathrm{i}}}$	－
Oilve dion		$\stackrel{\sim}{6}$	$\stackrel{\rightharpoonup}{\square}$	ふิ	$\stackrel{\infty}{\infty}$	$\hat{\infty}_{\infty}^{\infty}$	∞_{∞}^{∞}	$\mathscr{O}_{\infty}^{\infty}$	$\underset{\infty}{\infty}$	$\bar{\infty}$	$\stackrel{\infty}{\circ}$	$\stackrel{\circ}{\circ}$	do	$\stackrel{0}{\circ}$
$\frac{\lambda}{n}$	（5\％／U8）L3M	$\stackrel{\sim}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\bar{\square}}{\square}$	$\stackrel{\infty}{\infty}$	Ј	$\stackrel{\cong}{2}$	$\stackrel{\sim}{\square}$	$\stackrel{\infty}{\square}$	$\stackrel{\square}{-}$	$\stackrel{\otimes}{-}$
		$\stackrel{\bigcirc}{\square}$	$\stackrel{\cong}{c}$	$\stackrel{\text { n }}{\text { ¢ }}$	于	$\underset{-}{G}$	$\stackrel{\text { そ }}{\sim}$	年	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\sim}$	$\stackrel{\square}{-}$	$\stackrel{\square}{-}$	－	$\stackrel{\infty}{-}$
（\％）Lnalno yalvm		$\frac{m}{\text { ¢ }}$	$\stackrel{\infty}{\infty}$	নु	$\underset{\sim}{\infty}$	$\underset{\sim}{\underset{\sim}{7}}$	$\begin{aligned} & \bar{i} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\sim}{\infty}$	$\stackrel{\text { 〒 }}{\text { i }}$	$\begin{gathered} \text { İ } \\ \text { in } \end{gathered}$	$\stackrel{m}{\square}$	$\frac{ \pm}{\underset{\sim}{n}}$	$\frac{\bar{n}}{\bar{n}}$	$\stackrel{\aleph}{\infty}$
NOILdİOS30 daty		๙	๙	\sim	\sim	๙	～	\sim	幺	n	幺	Ω	๙	幺
SyGlaw Ni hldad		$\stackrel{\sim}{n}$	$\stackrel{8}{\circ}$	$\begin{aligned} & \stackrel{i}{q} \\ & \stackrel{y}{2} \end{aligned}$	8	$\stackrel{i}{n}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & i \\ & \stackrel{n}{0} \end{aligned}$	$\begin{aligned} & \circ \\ & \text { 닌 } \end{aligned}$	$\begin{aligned} & \stackrel{i}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & -1 \end{aligned}$	$\begin{aligned} & \text { or } \\ & \underline{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\infty}{\circ} \end{aligned}$	$\stackrel{\circ}{2}$
On 37dWVS		－	N	m	－	in	\bigcirc	\checkmark	∞	a	은	$=$	\simeq	\cdots
＇ON ${ }^{\text {a }}$（10H 3809		\pm												

RESULTS OF LABORATORY TEST

\bar{m}		1	1	1	1	1	1	1	1	1	1	$\stackrel{\circ}{\text { n }}$	\cdots	\cdots
$\frac{\pi}{x}$		1	$\frac{\infty}{0}$	त	$$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \end{aligned}$	？	?	饣－	$\stackrel{\text { J }}{\sim}$	$\stackrel{\infty}{+}$	1	1	1
(\%) SISNTVNV GZIS NIVYS	AEID	$\frac{8}{8}$	$\begin{aligned} & 8 \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 8 \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 8 \\ & \underset{\sim}{8} \end{aligned}$	$\frac{8}{i}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \underset{N}{\prime} \end{aligned}$	o	$\begin{aligned} & 8 \\ & \text { i } \end{aligned}$	$\underset{m}{8}$	8
	11！S	S ＋	$\begin{aligned} & \underset{\sim}{8} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { N } \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{8}{n} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { N } \end{aligned}$	$\frac{8}{\text { N }}$	$\begin{aligned} & 8 \\ & \underset{\sim}{d} \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \text { ì } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 8 \\ & \underset{m}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & N \end{aligned}$	$\underset{\text { i }}{8}$	8 i	8
	pues	8 i	$\underset{\sim}{8}$	$\begin{aligned} & 8 \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	8	$\begin{aligned} & 8 \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & 8 \\ & i \end{aligned}$	$\begin{aligned} & 8 . \\ & 0 . \end{aligned}$	$\begin{aligned} & 8 \\ & \dot{2} \end{aligned}$	$\underset{\infty}{\infty}$
	12AE．19	，	1	1	1	1	1	1	1	1	1	1	1	1
$\begin{aligned} & \underbrace{e}_{0} \\ & \frac{E}{2} \\ & \frac{1}{2} \end{aligned}$	IGNI NLIOILSV＇Td	∞ ∞ N	$\stackrel{\bullet}{\square}$	∞ N N	－	1	1	1	1	1	1	1	1	1
	OILSV＇Td	$\begin{aligned} & \underset{\sim}{n} \\ & \stackrel{n}{N} \end{aligned}$	$\begin{aligned} & \text { vi } \\ & \stackrel{1}{n} \\ & \text { n } \end{aligned}$	$\begin{aligned} & \bar{?} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \\ & N \end{aligned}$	1	1	1	1	1	1	1	1	1
	GIПOIT	$\begin{gathered} \mathrm{N} \\ \underset{\sim}{*} \end{gathered}$	$\begin{aligned} & \rho \\ & \infty \\ & \text { o } \end{aligned}$	\square \square \forall	$\begin{aligned} & \underset{\sim}{\infty} \\ & \infty \\ & \infty \end{aligned}$	1	1	1	1	1	1	1	1	1
	NLIAVYS＇dS	$\begin{aligned} & \hat{o} \\ & i \end{aligned}$	$\begin{aligned} & 6 \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & \hat{0} \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & \text { i } \end{aligned}$	$\begin{aligned} & \hat{0} \\ & i \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{c} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { g} \\ & \text { i } \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & \text { N } \end{aligned}$	$\begin{aligned} & \hat{0} \\ & i \end{aligned}$	$\begin{aligned} & \hat{0} \\ & i \end{aligned}$	∞ 0 \sim i	à n
	OILVY GIOA	$\xrightarrow{\mathrm{N}}$	¢	$\begin{aligned} & \infty \\ & \infty \\ & 0 \end{aligned}$	＋	$\begin{aligned} & \infty \\ & 0 \\ & \hline \end{aligned}$	∞	$\stackrel{\sim}{\infty}$	\cdots	$\stackrel{9}{1}$	$\stackrel{\text { N }}{\sim}$	¢ิ	¢	$\hat{0}$
$\frac{2}{\frac{2}{n}}$	（כว／แธ）L3M	\bigcirc	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	∞	$\stackrel{\infty}{-}$	$\underset{\sim}{N}$	－	＠	\bigcirc	2	の	$\stackrel{2}{2}$
	（05／แ8）\times \％G	\xrightarrow{N}	？	$\stackrel{\text { さ }}{\sim}$	Ј	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\leftarrow}{-}$	\cdots	\cdots	$\stackrel{\checkmark}{\square}$	®ิ	$\stackrel{\sim}{\square}$
（\％）LNJLNOつ 区JLVM		$\stackrel{\text { N }}{\stackrel{\text { N }}{+}}$	$\begin{aligned} & \infty \\ & \underset{\sim}{n} \\ & \stackrel{r}{2} \end{aligned}$	$\frac{m}{m}$	$\stackrel{\square}{\mathrm{o}}$	$\stackrel{\circ}{\stackrel{\circ}{\mathrm{N}}}$	$\begin{aligned} & \bar{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\text { ণ }}{\underset{\sim}{\circ}}$	$\begin{aligned} & \hat{0} \\ & \hat{N} \end{aligned}$	$\begin{aligned} & \hat{a} \\ & \infty \\ & \sim \end{aligned}$	$\begin{aligned} & \text { Nे } \\ & \text { Ǹ } \end{aligned}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\frac{m}{\sim}$	in
NOILdIEOSTG H3I8G		\bigcirc	\bigcirc	\bigcirc	$\stackrel{\sim}{\infty}$	$\mathscr{\varrho}$	$\stackrel{\infty}{\perp}$	\propto	$\stackrel{\sim}{\circ}$	\mathscr{O}	\propto	\oplus	$\stackrel{\sim}{\square}$	\sim
SEGLJW NI H．LdJG		\cdots	¢	$\begin{aligned} & \circ \\ & ? \\ & \ddots \end{aligned}$	8	$\begin{aligned} & 0 \\ & n \\ & n \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{n}{0} \end{aligned}$	8 N －	$\begin{aligned} & 0 \\ & n \\ & \text { m } \end{aligned}$	8 i i	¢	$\begin{aligned} & 8 \\ & \infty \\ & \infty \end{aligned}$	¢
	＇ON JTdWVS	－	N	m	\checkmark	in	\bigcirc	N	∞	a	\bigcirc	二	N	m
＇ON JTOH GYOG		\cdots												

SHEAR TEST GRAPH

BH NO: $\quad 11$
$\mathrm{C}=0.19 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 3.0 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

$\mathrm{C}=0.00 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 4.5 m
$\Phi=28.0^{\circ}$

SHEAR TEST GRAPH

$\mathrm{BHNO} \quad 11$
DEPTH: 6.0 m
$\mathrm{C}=0.21 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

$\mathrm{c}=0.27 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 7.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BHNO: II
DEPTH: 9.0 m
$\mathrm{C}=0.29 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 11
$\mathrm{C}=0.31 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 10.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 11
$\mathrm{C}=0.32 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 12.0 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 11
$\mathrm{C}=0.31 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 13.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 11
DEPTH: 15.0 m

$$
\begin{aligned}
& \mathrm{c}=0.33 \mathrm{kgf} / \mathrm{cm}^{2} \\
& \Phi=0.0^{\circ}
\end{aligned}
$$

SHEAR TEST GRAPH

BH NO: 11

$$
\begin{aligned}
& \mathrm{C}=0.00 \mathrm{kgf} / \mathrm{cm}^{2} \\
& \Phi=33.0^{\circ}
\end{aligned}
$$

SHEAR TEST GRAPH

BHNO: 12
DEPTH: 3.0 m
$\mathrm{C}=0.18 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 12
DEPTH: 4.5 m
$\mathrm{C}=0.19 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 12
$\mathrm{C}=0.21 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 6.0 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 12
$\mathrm{C}=0.26 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 7.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: $\quad 12$
$\mathrm{C}=0.28 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 9.0 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 12
$\mathrm{C}=0.41 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 10.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 12

DEPTH: 12.0 m
$\mathrm{C}=0.46 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 12
$\mathrm{C}=0.53 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 13.5 m
$\Phi=0.0^{\circ}$

齐

SHEAR TEST GRAPH

SHEAR TEST GRAPH

BH NO: 12
$\mathrm{C}=0.43 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 16.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

SHEAR TEST GRAPH

BH NO: 12
DEPTH: 19.5 m
$\mathrm{C}=0.00 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=31.0^{\circ}$

SHEAR TEST GRAPH

SHEAR TEST GRAPH

BH NO: 12
DEPTH: 22.5 m
$C=0.00 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=32.0^{\circ}$

SHEAR TEST GRAPH

SHEAR TEST GRAPH

SHEAR TEST GRAPH

BHNO: 13
$C=0.18 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 3.0 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 13
$\mathrm{C}=0.21 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 4.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 13
$\mathrm{C}=0.26 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 6.0 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 13
DEPTH: 7.5 m
$c=0.29 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: $\quad 13$
$\mathrm{C}=0.28 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 9.0 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 13
$\mathrm{C}=0.33 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 10.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 13
$C=0.59 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 13.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 13
$\mathrm{C}=0.56 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 15.0 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 13
DEPTH: 16.5 m
$C=0.00 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=32.0^{\circ}$

SHEAR TEST GRAPH

SHEAR TEST GRAPH

SHEAR TEST GRAPH

BH NO: 14
$\mathrm{C}=0.08 \mathrm{kgf} / \mathrm{cm}^{2}$

DEPTH: 3.0 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 14
DEPTH: 4.5 m
$\mathrm{C}=0.14 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: $\quad 14$
$\mathrm{C}=0.17 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 6.0 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

$\mathrm{C}=0.23 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 7.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BHNO: 14
DEPTH: 90 m
$\mathrm{c}=0.27 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 14
$\mathrm{C}=0.30 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 10.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 14
$\mathrm{c}=0.29 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 12.0 m

SHEAR TEST GRAPH

BH NO: 14
DEPTH: 13.5 m

$$
\begin{aligned}
& \mathrm{C}=0.48 \mathrm{kgf} / \mathrm{cm}^{2} \\
& \Phi=0.0^{\circ}
\end{aligned}
$$

SHEAR TEST GRAPH

BH NO: $\quad 14$
DEPTH: 15.0 m
$\mathrm{C}=0.59 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

$\mathrm{C}=0.00 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 16.5 m
$\Phi=32.0^{\circ}$

SHEAR TEST GRAPH

SHEAR TEST GRAPH

BH NO: 14
$\Phi=33.0^{\circ}$

SHEAR TEST GRAPH

BHNO: 15
$\mathrm{C}=0.18 \mathrm{kgf} / \mathrm{cm}^{2}$

DEPTH: 30 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 15
$C=0.21 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 4.5 m

$$
\Phi=0.0^{\circ}
$$

SHEAR TEST GRAPH

BH NO:
$C=0.25 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 6.0 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

$\mathrm{C}=0.29 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 7.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 1
$\mathrm{C}=0.31 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 9.0 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO: 15
$\mathrm{c}=0.33 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 10.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

BH NO : 15

DEPTH: 12.0 m
$\mathrm{c}=0.36 \mathrm{kgf} / \mathrm{cm}^{2}$
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

$c=0.42 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 13.5 m
$\Phi=0.0^{\circ}$

SHEAR TEST GRAPH

SHEAR TEST GRAPH

$\mathrm{C}=0.00 \mathrm{kgf} / \mathrm{cm}^{2}$
DEPTH: 16.5 m
$\Phi=32.0^{\circ}$

SHEAR TEST GRAPH

SHEAR TEST GRAPH

嘘 1號

